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Abstract

In this work we present a method that combines tensor-
based face modelling and analysis and non-rigid structure-
from-motion (NRSFM). The core idea is to see that the con-
ventional tensor formulation for the face structure and ex-
pression analysis can be utilised while the structure com-
ponent can be directly analysed as the non-rigid structure-
from-motion problem. To the NRSFM problem part we fur-
ther present a novel prior-free approach that factorises the
2D input shapes into affine projection matrices, rank-one
3D affine basis shapes, and the basis shape coefficients. The
linear combination of the basis shapes thus yields the recov-
ered 3D shapes upto an affine transformation. In contrast
to most works in literature, no calibration information of
the cameras or structure prior is required. Experiments on
challenging face datasets show that our method, with and
without the metric upgrade, is accurate and fast when com-
pared to the state-of-the-art and is well suitable for dense
reconstruction and face editing.

1. Introduction

Non-rigid structure-from-motion (NRSFM), the problem
of reconstructing both the scene geometry and dynamic
structure, is a classic problem in computer vision. NRSFM
in general is a difficult problem, although there have been
significant developments in the last two decades. The start-
ing point for NRSFM can be seen as the work [[11]] propos-
ing a low-rank approach with the assumption that the de-
formable 3D shape is a linear combination of rigid 3D basis
shapes. This led to a matrix factorisation problem general-
ising [34]. The classic NRSFM problem has the character-
istic that the decomposed motion matrix has a block-form
structure. A general solution also needs to tackle the inher-
ent geometric and structural ambiguities that have been a
challenging problem to date.

There have been numerous approaches to the NRSFM
problem. The majority have assumed a calibrated affine
camera and utilised the well-known orthogonality con-
straints. Additional constraints include heuristic deforma-
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Figure 1: Overview for 3D reconstruction and editing. The
2D training data is factorised by a 5D tensor-based, and a
matrix-based approach. The tensor model yields dense 2D
shapes from 2D landmarks, and editing the parameters gives
an adapted 2D shape. The 3D shapes are obtained by a
factorisation defined by the matrix-based model.

tion minimisation [8]], constraints arising from stereo rig
[19], shape basis fixation [41], and factoring a multifo-
cal tensor [26]]. Physical and temporal priors have also
been widely used such as rigidity [4,|13], camera trajectory
smoothness [22], temporal smoothness [2, [35], and defor-
mation 8} [14]. The problem has alternatively been viewed
as manifold learning [[14] that has naturally led to optimi-
sation by alternation [31} 135, 36]. In addition, a coarse-
to-fine solution was proposed in [4] that uses information
on several scales. There have also been uncalibrated ap-
proaches [9,110] that assume statistical independence of the
shape bases to solve the structural and geometric ambigui-
ties. In [17], the structural ambiguity was ignored by using
the observation that the reconstruction is not ambiguous un-
like the shape basis.

Most recently, [29] posed the NRSFM problem as a
multi-layer block sparse dictionary learning problem which
was converted into a form of a deep neural network. In
[33], a dense auto-decoder-based deformation model with
Fourier domain constraints was trained on dense 2D point
tracks. In [30], a union of local linear subspaces approach
was proposed that summarises the behaviour of local mea-
surement by points on the Grassmannian manifold while
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the 3D shape was represented using the low-rank constraint.
Specifically 3D faces have been modelled by factorisation
approaches [5, 20]. As a generalisation of the matrix-based
SVD the Higher-Order SVD (HOSVD) was introduced in
[L8]] which yields subspaces directly related to the data di-
mensions. The HOSVD has since been proven to be a use-
ful tool to model and analyse faces [37} 138, [16} 24} 25| 23]].
However, in most works the HOSVD is employed on 3D
faces 12} 16} (7, [1} 24, 25 23]]. Additionally, there have been
attempts in the shape-from-shading community to estimate
a tensor structure from unstructured data, i.e., if no labels
for the tensor dimensions are available [39, 40].

Even though the neural networks (NNs) have received
a lot of attention in the community their application in
NRSFM is not entirely problem-free. They tend to over-
fit and they do not provide a direct control of the model
complexity. Additionally, with the exception of [29], previ-
ous methods on 3D reconstruction of faces and human body
shapes require strong 3D supervision, and are unable to in-
terpolate or create new shapes with varying expressions.

This work hence has two major objectives. First, by ap-
plying a tensor model for faces, we aim at utilising the struc-
ture of the database where shape, data dimensionality, view-
ing angle, identity, emotion naturally form the modes of the
data tensor. The approach [23]] therefore provides a straight-
forward way to parameterise and edit faces. We show that
their results, obtained with 3D data, can also be derived
from 2D projection data. Second, after realising that the
face projection data naturally yields the non-rigid structure
from motion problem in one of the matrix unfoldings of the
data tensor, we aim at simultaneously solving it as part of
the tensor model. Moreover, we reformulate the non-rigid,
low-rank model and, instead of trying to solve the harder
problem of finding the underlying rank-three 3D shape ba-
sis, we individually analyse the singular vectors that form
the shape matrix and back-project them onto 3D to create
rank-one shapesp_-] An overview of our approach is illus-
trated in Fig. [1|for 3D reconstruction and shape editing.

Our contributions are summarised as follows.

* We combine (1) tensor-based modelling of faces
and expressions and the (2) non-rigid structure-from-
motion into one problem. The key observation is that a
matrix unfolding of the tensor yields the standard mea-
surement matrix of the NRSFM problem.

* We propose a novel NRSFM method that is sim-
pler, more accurate, and computationally more effi-
cient than previous methods. Our method is faster than
all the other factorisation approaches, and computa-
tionally light compared to NN approaches, because it

Note that this is different from [17] where full-rank basis shapes were
represented by 3N vectors—we instead assume that the basis shapes are
degenerate in the meaning that each of them is represented by a 3 x N
rank-one matrix, i.e., the matrix has three linearly dependent rows.

does not require a large database and it has few param-
eters. It is also well suited for dense data.

* We apply the well known stratified approach for the
NRSFM problem, i.e., we use uncalibrated, affine
cameras. The advantage is that we avoid the cumber-
some orthogonal constraints in the non-rigid factori-
sation step that makes our method simpler and more
general. The metric upgrade for the reconstruction can
directly achieved by using camera calibration informa-
tion or the standard autocalibration methods.

* We suggest using a rank-one shape basis by back-
projecting each singular vector of the factorisation
model onto the 3D space. We hence avoid the problem
of grouping the singular vectors and do not need to ex-
plicitly enforce the block-structure of the motion ma-
trix. We provide an option to retrieve the basis shapes
so that they become as independent as possible.

* We retrieve the same subspace structure for 2D faces,
which was found for 3D faces in [24, 23]].

* We propose a generative model to explicitly parame-
terise and edit 3D shapes using the semantically mean-
ingful subspaces of the 2D canonical tensor model.

2. Tensor Representation

Let X € RNXDXFxPxE 1) — 9 pe a data tensor of 2D
faces, where NV is the number of corresponding points, F'
number of 2D projections of each 3D face with the fixed
expression and identity, P number of persons, and £ num-
ber of expressions. It is assumed that all the faces in A" have
been centered so that the each 2D face has the mean coordi-
nate in the origin. The tensor X is then decomposed by the
Higher-Order-SVD (HOSVD) [18]] as

XX =8x; U x, UD x; UG x, UD x, UG,
(1

where x4 is the d-way product, S € RN XPXEXPXE g the
core tensor, and U@ € R4 ¢ = 1,2,...,5; are semi-
orthogonal matrices which consist of the singular vectors
corresponding to the d-mode unfolded tensor, with d < d
representing the number of retained elements of the dimen-
sion d, i.e., the smallest singular values and vectors have
been truncated. The tensor X = Xy + AX is divided into
rigid Xy and non-rigid AX" parts by separating the three
largest mode-1 singular values and vectors from the remain-
ing ones, respectively. The rigid part is thus obtained as

Xy ~ /?0 = 30 X1 Uél) X9 U(Q) X3 U(S) X4 U(4) X5 U(B),

I (@)
where Sy € 3 x D x F' x P x F is the core tensor, and the
N x 3 semi-orthogonal matrix Ugl) contain the first three
1-mode singular values and vectors. The non-rigid part AX
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is formed as

AX ~ A.)? = 81 XlU(ll) XQU(Q) XgU(S) X4U(4) X5U(5),

B o (3)
whtlare S € ]R(N’?’)XDXFXPXE is the core tensor, and
Ug ) ¢ RNX(N=3)

3. Rank-One Basis Shapes
3.1. Rigid Component

The rationale of dividing the tensor X" into the rigid and
non-rigid part comes from the interpretation of the 1-mode
matrix unfolding X1 of the tensor which is the transposed
measurement matrix of the classic Tomasi—Kandade [34]
factorisation method. Hence, the first three left singular
vectors of X (1) represent the least squares estimate for the
affine 3D structure By, obtained by the singular value de-
composition as

~ 7T 1 T
bl (mVél)Eé”) (JNUE)” ) = MoBo, (4)

M, Bo

where the 21 x 3 matrix My = (M!,M2,... M) con-
tains estimates for all the 2 x 3 inhomogeneous affine pro-
jection matrices for all the I = FPE views. In other
words, the non-rigid variation in the decomposition (T) is
constructed centred at the mean rigid 3D shape, that is,
the 3D point, corresponding to a non-rigid object and pro-
jected to the image i, is z’, = bg,, + Az, where by, is
the rigid, mean shape and Az!, is the non-rigid component.
The other modal components in the rigid approximation Xjp,
apart from the mode-1, constitute the variations in the affine
projection matrix e.g. the face widening due to smiling.

3.2. Non-Rigid Component

In contrast to the standard factorisation model which
is based on the assumption that a non-rigid shape is a
linear combination of 3-dimensional basis shapes, we ad-
ditionally assume that the non-rigid basis shapes are 3-
dimensional rank-one shapes—not 3N-vectors as e.g. in

Dai et al. [17]. In effect, the non-rigid components of
the 3D shapes are represented as Az! = ij:_lg ol brn,
where «, is a scalar and rank(By) = 1 for k£ # 0, where
Bj = (bg1 bgz -+ -bgy) € R¥*N. Assuming that all the
structure components share the same projection matrix on
to a fixed image, the non-rigid 3D component Az’, maps to
the non-rigid 2D parts Ax?, stored in AX, where

N-3
A%}, = M'Azl, =M’ | > ajbin | - (5)
k=1

The mode-1 unfolding of the tensor AX’ thus factorises into
the a weighted sum of N — 3 3D rank-one basis shapes By,

with o, € R, and I projection matrices M € R?*3, as

AXMDT
aiM!  a;M' - ol M B,
a?M?  a3M? ... a%73M2 B,
ofM! odM? ... ozfv_gMI By s

—MEecR2IX3N -9

(6)

Clearly, the basis matrix ]3, and hence AX(l)TU, has the
rank N — 3. Additionally, the motion matrix M has the
block structure shown above.

Since the SVD yields the closest approximation in the
least squares sense under the rank constraint, the auxiliary
estimates for the structure and motion matrix are obtained
as

AR — <\/1NV<1)2<1>> (VEUOT) =MB, @)
N——
=M =B

The remaining problem is to find the (3N — 9) x (N — 3)
operator A so that

MB = MA'AB = MB, ®)

where B = AB and M = MAT, and M and B are the
estimates matching the form (€)). In the following two sub-
sections, we discuss two different approaches for finding A.

3.3. Principal Component Analysis (PCA)

Let CH) = Cél) +ACM denote the mode-1 covariance
equivalent to

c® — xOxOT _ goxm?goT 9)

2 T
where Cél) Uél)Eél) Uél) and ACH =

Wy 2mT -
U;73;7 U;’ . We see that the mode-1 left singular vec-
tors, or the rows in By and B, are the principal components
of the columns in the mode-1 matrix unfolding of the data
tensor while the squared mode-1 singular values squared are
the corresponding variances. In other words, AC() con-
tain all the principal components, except the first three since
the mean rigid shape has been factored to Cél). Hence, B
has N — 3 linearly independent rows that form the basis
to the non-rigid structure. Each of them are mapped to the
three-dimensional space by back-projection to form rank-
one basis shape Bk = dkbg, where b;f denotes the row k
of B, and dy, is the 3 x 1 unit vector in which the compo-
nent k is back-projected into the 3D space. The direction
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di = Rye; results from the 3D rotation Ry, that maps the
one-dimensional basis b} , first back-projected on the x-axis
direction, to the rigid 3D shape. A in (8] is hence equivalent
to the form A = D, where D is the (3N — 9) x (N — 3)
block diagonal matrix with 3 x 1 blocks d.

3.4. Independent Component Analysis (ICA)

More generally, the operator A can be written in the
form A = DG, where G is a (N —3) x (N — 3) orthogonal
matrix. Although no grouping of the rank-one components
is strictly necessary, we also consider estimating the rank-
one shapes by setting G so that the components are as sta-
tistically independent factors as possible. This will allow us
to analyse statistically linked shape components, such as lip
movements, by isolating them from the other deformations.
We will do this by Independent Component Analysis (ICA).

ICA is a method for blind source separation that intends
to decompose the underlying signals into statistically inde-
pendent factors by using higher order statistics of multidi-
mensional observations characterised by the random vector
Z, and can be defined by minimising the mutual information

12) =Y H(Z) - H(2) (10)

where H refers to differential entropy and Y = AjcaZ
to a random vector corresponding to the columns in B. If
the vectors are mean centred and white, it implies that the
mixing matrix Ajca = G7T will be an orthogonal matrix,
hence,

Bica = A;,B = GB, (11)

where the rows of Bjca will be in as statistically indepen-
dent as possible. Here, we compute the orthogonal, separa-
tion matrix G as described in [27].

3.5. Recovery of Rank-One Basis Shapes

Let by, denote the row k£ in Bpca = B or Bica, depend-
ing whether the PCA or ICA model is selected, respectively.
We are searching for the minimiser to the energy functional

E(d,a) = [[AXD" =) " aiBj |3, (12)
i k

subject to ||dx||2 = 1, for all k, where B{ = M'd;b}
are the rank-one operators referring to the rank-one basis
shapes, and o}, are the corresponding basis coefficients that
can be computed by orthogonally projecting the differen-

tial measurement matrix blocks AX™* onto the rank-one
operators. We first note a useful property, stated as follows.

Lemma 3.1 B L B};, in the operator inner product, k #
K, forall i, 4.

Algorithm 1 Non-rigid Structure From Motion by rank-one
Basis Shapes

1. Form the translation corrected data tensor X, as in @
Initialise the parameters d, a.

2. Decompose & into the rigid Xjy and non-rigid AX" part
as in (2) and (3)), respectively.

3. Factorise the non-rigid part as AXOT x MB, where
M=LVOsOandB=yVNUD".

4. Do either

(a) Compute the PCA basis by assuming G = I and
so that Bpca = B; or

(b) Find the orthogonal transformation G and ICA
basis by FastICA [27] so that Bjca = GB.

5. Update the component affine back-projections dy, k =
1,2,...,K, by minimising over d subject to
ldx|l2 = 1, for all k.

6. Form the rank-one basis shapes Bi = M{d;b}, i =
1,2,...,1, where bE is the kth row of Bpca or Bica,
k=1,2,...,K.

7. Update the basis coefficients by orthogonal projection
ol = (AXM' BL)/(BL BL),i=1,2,...,1,

8. Iterate from Step 5 until convergence.

Proof. 'We may write

(Bi.. Bi) = (vec{Bj}, vec{Bj.})

, , (13)
= <Mzd]€, M’ dk’><bk7 bk?’>7

which vanishes for k& # £’ since by, L by. ]
Now, we are ready to show how we minimise (12). The
method is given in Algorithm I}

4. Canonical Tensor Model

In [24], a tensor model of 3D face shapes based on the
factorisation of a 3D data tensor was presented. We adopt
this approach and apply the HOSVD to a 5D data tensor
containing 2D shapes. Inspired by [24], a 2D face shape
f € R¥*D can be represented using (1) as

f=58x, UM x, u?
x3p3 UD xypi UW x5 pTU®, (14

where pg, £ = 3,4,5 represent the canonical parameter
vectors, whose lengths correspond to their respective sub-
space U®) . In analogue to [24]], an unknown shape f can
be approximated by f by minimising

5

TS 2
Htl)}anf —f)7 + Z MellPell3 + Aes (PA1—1)7, (15)
k=3
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where A\, A\ s € R are weights which must be manually
set. This minimisation problem can be conveniently solved
in an alternating scheme, see [24} 23]].

In analogue to (2) and (3)), one face shape T can be rep-
resented as the sum f = ?0 + AF, where the rigid part

?0 =Sy X1 U(()l) x5 UG X3 ug X4 u:f X5 ug, (16)
and the nonrigid part

Af = S X1 U(ll) xo U x4 ug X4 u:f X5 ug, 17
and ug = pEU(k), k=3,4,5.

5. 3D Shape Synthesis and Editing

So far we have presented two factorisation approaches:
a matrix-based (Sec. [3), and a tensor-based (Sec. @). The
two major differences between them are that (1) only the
matrix-based approach provides 3D estimates for each 2D
shape, as a weighted sum of 3D basis shapes, and (2) only
the canonical tensor model-based approach offers intuitive
synthesis of new 2D shapes by semantically meaningful pa-
rameters related to the subspaces. Here, we combine both
approaches to enable synthesis of new 3D shapes from 2D
by parameter editing, e.g. to change the expression.

First, we factorise the 2D data by both approaches. Sec-
ond, we use the tensor model to create a new 2D shape
by either: (1) choosing the parameter vectors py freely, or
(2) estimate them to approximate an arbitrary 2D shape x’
by solving (T3), after global alignment, and then change the
parameter vectors to a desired identity or expression, yield-
ing a transfer of person or expression, respectively. In both
cases the tensor model provides a 2D shape X’.

Third, we employ the matrix-factorisation to retrieve the
corresponding 3D estimate z’ as follows. For each 2D train-
ing sample x’ its 3D estimate z’ is the weighted sum of 3D
rank-one basis shapes

7' =Bo+ »_ajdiby. (18)
k

The basis coefficients o, are computed by orthogonal pro-
jection in step 7 of Alg. |1} and employs the estimated pro-
jection matrix M of the sample 4, which is unknown for a
new shape X', but can be estimated by the affine camera re-
section algorithm as M. The basis coefficients «j, are then
estimated that yield the 3D estimate z’ corresponding to the
new shape X’ asz’ = By + ), o}, d;b}.

We use the proposed approach to synthesise the six pro-
totypical emotions for the mean person and rotation in 2D,
shown in Fig. ffa)-(g), and their 3D estimates shown in
Fig. @|{h)-(n), thereby retrieve dense 3D shapes from sparse
2D points, as shown in Fig. [I]

6. Databases
6.1. LS3D-W Balanced

The Large Scale 3D Faces in-the-Wild dataset (LS3D-
W) [15] is a facial landmark dataset, which contains ca.
230,000 images, each annotated with 68 2D points. [15]
also defines the LS3D-W Balanced, as a subset of the LS3D-
W, a total of 7200 images, and includes a balanced number
of varying yaw angles. The faces vary in expression and are
in random orientation, and order, hence no temporal infor-
mation or underlying substructure is provided.

6.2. Binghamton 3D Facial Expression Database

The Binghamton 3D Facial Expression Database
(BU3DFE) [42] contains 2500 3D face scans, and corre-
sponding images. 100 persons (56% female, 44% male) in
25 facial expressions: neutral, or one of the six basic emo-
tions (anger, disgust, fear, happiness, sadness, and surprise)
in four increasing expression intensity levels. For each face
scan 83 3D facial landmarks are provided, and we added the
nose tip and top of forehead, resulting in 85 points. These
were used to estimate 7308 dense point correspondences be-
tween the dense scans by an adapted version of [21]. Ad-
ditionally, [3] yields 68 2D landmarks for each frontal face
image. Hence, we obtain the following three 2D datasets:

e BU3DFE-68: the 68 2D landmarks retrieved by [3]].

* BU3DFE-85: the 85 sparse 3D landmarks rotated by 3
yaw angles o, € {*%, 0, %}, projected to 2D.

* BU3DFE-7k: the estimated 7308 3D points rotated by
3 yaw angles ay € {—%,0, %}, projected to 2D.

7. Experiments

We compare the two proposed variants of our approach
to Dai et al.’s pseudoinverse (PI) [17], and Block matrix
Method (BMM) [17], and Kong and Lucey’s Priorless de-
composition (K&L) [28]], and Brandt et al.’s ISA [10]]. For
the factorisation we selected N = 15 components for all
experiments and used the equivalent truncation point for all
the methods so that the results are directly comparable.

7.1. Expression Space

The multilinear tensor model of 3D faces in [24], based
on the BU3DFE database [42], revealed a planar star-shaped
substructure in the expression subspace. and a similar struc-
ture on the basis of 2D database was found in [23]]. To com-
plement these findings, we investigated 2D data based on
the BU3DFE dataset [42]], described in Sec.[6.2} The result-
ing expression space U®) from (1) reveals the same sub-
structure for all of the three datasets, see Fig. E}
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(a) BUDFE-68 (b) BU3DFE-85 (c) BU3DFE-7k

Figure 2: Visualisation of the first three singular vectors
of the expression space U®) from (T resulting from the
factorisation of the datasets (a) BU3DFE-68, (b) BU3DFE-
85, and (c) BU3DFE-7k; c.f. [23]].
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Figure 3: Approximation error for varying percentage of
explained variance (PoV).

7.2. Static Rigid vs. Flexible Nonrigid

In our approach, the original data tensor X is represented
as sum of rigid Xy and nonrigid AX components. As-
suming that the rigid part does not vary among persons or
expressions, changing the parameter vectors of the tensor
model (T4) should not change it. Therefore, we synthe-
sise the rigid and nonrigid 2D representations of the basis
emotions by varying u? as one row of U(®), referred to as
?0 (Wemotion )s OF ?(uemoﬁon), while u;f, k = 3,4 are the row-
wise mean of UK) e, average rotation or person. The
resulting 2D faces, shown in Fig. ffa)-(g), can be projected
to their corresponding 3D representation 3D illustrated in
Fig. [|[h)-(n), see Sec.[5] Here different heights in 2D stem
from 2D affine projections. As expected, varying the emo-
tion does not change the rigid part (see Supplementary Ma-
terial), which equals to the rigid basis shape, shown in col-
umn one. Please note that neither the 2D faces nor the 3D
faces in Fig. [ relate to actual training samples.

For quantitative evaluation, we approximate the origi-
nal shapes f; C X, by their known parameter vectors uy
(14)), and compute the distance between true and estimated
shapes. We repeat the experiment with varying percent-
ages of explained variances, i.e., cropping factors of sub-
spaces. Fig. [3] shows that the error based on the nonrigid
part is always below the error of the rigid part, that is,

I " I T
T il = filla < 22, I — foill2.

Table 1: 3D MSE error based on (I9) of different methods.

BU3DFE-85 BU3DFE-7k

PI [17] * *

BMM [17] * *
K&L [28] 0.1666 0.3521
ISA [10] 0.0290 0.0263
BPCA 0.0098 0.0090
BICA 0.0157 0.0088
BPCA+QA 0.0286 0.0140
BICA+QA 0.0340 0.0130

* no result within 5 days

Table 2: Relative reprojection error, reported as inverse
SNR (20), for different NRSFM methods.

& < &
= & & &
S & & &
e S S S
N 5y 5y 5y
PI [17] 0.00126  0.00231 * *
BMM [17] 0.00100 0.00231 * *
K&L [28] 0.00013 0.00141 0.00214 0.00121
ISA [10] 0.00016  0.00130 0.00216 0.00120
BPCA 0.00012 0.00041 0.00121 0.00066
BICA 0.00011 0.00062 0.00134 0.00072

* no result within 5 days

7.3. 3D Reconstruction

In this section, we report the 3D reconstruction results
for LS3D-W Balanced, see Sec.[6.1] and the three datasets
based on BU3DFE, see Sec. [6.2] with different methods.
Specifically, our method factorises the input into a motion
matrix and 3D rank-one basis shapes, as illustrated for the
dense dataset BUSDFE-7k in Fig.[d] R

All the methods provide 3D estimates Z € R3/*N for
the 2D input shapes X € R2/* which can be compared to
normalised ground truth (GT) 3D shapes Z, if available. Dai
et al.’s and Kong and Lucey’s methods yield the result up to
an unknown similarity transform, as to the GT, while ISA
and our methods yield the result up to an unknown affine
transform. Thus we report the 3D error between the aligned
3D shapes z° € Zyjign, and z' € Z,jigp, defined as

I
1 S
MSEsp = INT § |z — 2|3 (19)
=1

We also evaluate our affine reconstruction results upgraded
to metric by Quan’s affine autocalibration (QA) method
[32], and thereafter registered by Procrustes alignment. The
results are collected in Tab. [Tl
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Figure 4: The six prototypical emotions, synthesised by the tensor model (T4) for the average rotation, and average person,

with varying expression us. First row: 2D, Second row: 3D.
varying emotions (see Supplementary Material),

shows the rigid 2D shape f, (T6), which looks the same with
@-@) 2D shapes with the nonrigid part f = fy + Af (T7). The synthesised

3D shapes (see Sec. [3)) are shown in (b)) for rigid, and (i)-(n) with the nonrigid part. Please note that none of these faces has a
corresponding 2D face in the training data, and all of them have been created solely from 2D points.

(@Input (b)K&L  (c)ISA  (d)BPCA (e) BICA
= — 7 _ e - - S
SATE = = =
(HGT (9)K&L (h)ISA (i) BPCA (j)BICA

Figure 5: Selected examples of the 3D reconstruction from
(a) 2D input with known (f) 3D ground truth 3D. Estimates
in 2D and 3D are presented for the methods: (b), (g) K&L,

, @ ISA, @, (E[) BPCA, and (E[), (E[) BICA.

Additionally, we compute the distance between the 2D
input >§' € X and reprojected estimated 3D reconstruction
%' € X. We use the relative reprojection error defined by
the Inverse Signal to Noise Ratio (iSNR) [10] as

||€_€H%ro

iSNR = o
||X_ XHF‘ro

(20)

where e = X — X, and X refers to the mean. The resulting
mean iSNR are displayed in Tab. 2] The affine autocali-
bration does not affect the reprojection error, hence is not

repeatedly reported.

In general, it can be seen that all our proposed methods
BPCA, BICA, BPCA+QA, and BICA+QA lead to satisfac-
tory results in both low 2D and 3D errors. The variants with
the metric upgrade yield slightly lower score, when com-
pared to the affine reconstructions, due to the inevitable au-
tocalibration error. While our methods finish in moderate
running time, the methods BMM and PI tend to take several
days, even on sparse datasets. Therefore, we did not evalu-
ate them on two of the four datasets. The method [28]] per-
forms similarly as well as our approaches in terms of time,
but yields moderately higher errors in 2D, and clearly higher
3D errors, see Tab. [I} The 3D errors based on ISA [[10] are
similar to our methods. The quantitative findings are sup-
ported by qualitative evaluation (Fig. [5) which shows that
our dense 3D shape reconstructions by BPCA and BICA,
match the GT shape equally well as ISA, and substantially
better than K&L [28], which yields relatively flat 3D shapes
(see also Supplementary Material).

8. Conclusion

In this work, we combined a tensor model, similar to
[23], with a matrix-based factorisation addressing the non-
rigid structure-from-motion problem. By construction, the
tensor model naturally unfolds to the NRSFM measurement
matrix which sets the starting point for our method. We
then showed how the non-rigid structure-from-motion prob-
lem can be solved by introducing rank-one basis shapes,
which simply are 3D back-projections of the principal com-
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Figure 6: Illustration of the 12 rank-one basis shape By + wy, By, retrieved by our proposed methods. (Eb shows the identical
rigid basis shapes By for BPCA, and BICA. The absolute values of the covariance matrices of the nonrigid basis shapes are
shown in @ for BPCA, and for BICA. The synthesised 3D basis shapes are shown in (]E_l]) for BPCA, and (E[) for BICA.
Each column represents the deviation from the basis shape based on the kth rank-one basis shape. Each shape is displayed in
grey and with colour-coded distance to the basis shape. (Dark blue is zero distance, yellow represents a high distance.)

ponents of the measurement matrix, or alternatively, back-
projections of its statistically independent components. In
contrast to almost all the earlier methods in NRSFM, no
cumbersome orthogonal constraints are required with our
method since it is based on stratified approach. That is
the reconstruction is first found up to an unknown affine
transform after which it can be converted to metric by us-
ing the camera calibration information. The experiments
showed that our approach suits well for dense correspon-
dences and is better than the state-of-the-art methods in re-
construction error and computational efficiency, both in 2D

and 3D. The other modes of the tensor provide an intuitive
folding into the semantically meaningful subspaces. This
facilitates the creation of new identities or expressions by
editing the model parameters. Even though we build our
method around the tensor model solely on 2D data, the
affine, rank-one 3D basis shape formulation of the prob-
lem is simple and efficient, and renders as a promising tool
for further development of dense NRSFM methods. In the
future, we hence plan to incorporate the proposed tensor
formulation into a neural network architecture.
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