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Figure 1. Using our model we can edit StyleGAN latent codes in the direction of the six prototypical emotions.

Abstract

In this paper, we use a tensor model based on the Higher-
Order Singular Value Decomposition (HOSVD) to discover
semantic directions in Generative Adversarial Networks.
This is achieved by first embedding a structured facial ex-
pression database into the latent space using the e4e en-
coder. Specifically, we discover directions in latent space
corresponding to the six prototypical emotions: anger, dis-
gust, fear, happiness, sadness, and surprise, as well as a
direction for yaw rotation. These latent space directions
are employed to change the expression or yaw rotation of
real face images. We compare our found directions to simi-
lar directions found by two other methods. The results show
that the visual quality of the resultant edits are on par with
State-of-the-Art. It can also be concluded that the tensor-
based model is well suited for emotion and yaw editing, i.e.,
that the emotion or yaw rotation of a novel face image can
be robustly changed without a significant effect on identity
or other attributes in the images.

1. Introduction

Generative Adversarial Networks (GANs) [12] have
emerged as one of the most promising architectures for im-
age synthesis. GANs can produce synthetic images with
near-perfect photorealism [5, 18–21]. GANs learn to orga-
nize the data they are trained on into a latent space and are,
by drawing samples from the latent space, able to synthesize
new images which are not contained in the training data but
follow the same distribution. In particular, in the field of
face synthesis StyleGAN has set new standards for what is
possible [19–21].

Recent work has explored methods to gain artistic con-
trol over the images produced by modern GANs [1, 17, 25,
29, 33–35, 41]. In this work, we use a multilinear tensor
model to derive latent space directions in StyleGAN2 [21]
corresponding to the six prototypical emotions: anger, dis-
gust, happiness, fear, sadness, and surprise as well as yaw
rotation. With these directions, we are able to edit the emo-
tion of real face images as shown in Fig. 1.
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StyleGAN. The StyleGAN generator G is composed of
two networks, the mapping network f and the synthesis
network g. The mapping network f maps the latent vector
z P Z onto the auxiliary latent space W while the synthesis
network maps a vector w P W to the final output image.
The latent vectors in Z follow the standard normal distri-
bution N p0, Iq while the distribution of the auxiliary latent
codes in W is learned by the mapping network f . The main
benefit of this mapping is that the W space is more disen-
tangled if compared to the Z space [20].

Every major block corresponding to a resolution of
the synthesis network is modulated by two style vectors
w1, w2 P R512. Thus, for the full 1024 by 1024 genera-
tor there are 9 major blocks and the synthesis network takes
a total of 18 style vectors as an input. Each set of style
vectors has different effects on the synthesized image. In
detail, the style vectors for the early layers, corresponding
to coarse spatial resolutions, control high-level aspects of
the image such as pose and face shape. Style vectors on the
middle layers control smaller scale facial features like hair
style and if the eyes and mouth are open or closed. The style
vectors on the later layers correspond to higher resolutions
controls such as the texture and the microstructure of the
generated image [20]. In W space, each of the style vectors
are identical. However, we can also allow them to be differ-
ent, in which case the resulting space is denoted as the W`
space. The W` space can be used for style mixing [20]
and GAN inversion [28, 45]. Recently, an additional latent
space referred to as style space has also been proposed [41].

Semantic Face Editing. Several methods have been pro-
posed to enable edits of the images produced by StyleGAN.
InterFaceGAN [32,33] uses pre-trained binary classifiers to
annotate StyleGAN generated images based on single bi-
nary attributes, e.g., young vs. old, male vs. female, glasses
vs. no glasses. Support vector machines are then trained on
the annotated data to discriminate between each attribute in
the latent space. The normal vectors of the separating hy-
perplane define a direction in latent space that changes the
corresponding binary attribute. GANSpace [17] finds in-
terpretable directions in an unsupervised fashion with PCA
while manual examination of the found directions is re-
quired. Directions found with PCA are typically entan-
gled, affecting multiple attributes. It was shown that the
degree of entanglement can be reduced by only applying the
found directions to a subset of the style vectors. It has also
been proposed to make the eigenvalue decomposition on the
weights of the pre-trained generator to discover meaning-
ful semantic directions in the latent space [34]. Recently,
StyleCLIP [25] demonstrates text driven semantic editing
by minimizing CLIP [27] loss between a text input and
the generated image. StyleFlow [1] proposed editing along
non-linear paths using normalizing flows to better preserve

identity.
Separate from StyleGAN research, different multilinear

methods have been widely used to model and analyze faces
and expressions [4, 10, 15, 38]. Recently there has been
some interest in applying these methods to explore the la-
tent space of GANs. For example, StyleRig [35] proposes
edits by minimizing the loss between the image produced by
the generated image and an image rendered by a 3D mor-
phable model. Furthermore, models based on the Higher-
Order Singular Value Decomposition (HOSVD) have suc-
cessfully been used to model faces, their 3D reconstruction,
as well as in transferring expressions [6,7,39,40]. Recently,
it has been suggested [16] to use such a HOSVD-based ten-
sor model for semantic face editing in StyleGAN. Here a
facial expression database was projected into the StyleGAN
W` space and relevant semantic subspaces corresponding
to identity, expression and yaw rotation were defined using
HOSVD-based subspace factorization. The model showed
limited flexibility for representing arbitrary latent codes and
to overcome this a stacked style-separated model was pro-
posed. This extended the tensor model to an ensemble of
tensor models, one for each style vector in the StyleGAN
W` space. Further, it was shown that in the derived expres-
sion subspace, each of the six prototypical emotions formed
nearly linear trajectories in agreement with [14]. Although
initial results were promising, convincing expression edit-
ing using a HOSVD-based model on the StyleGAN latent
space was however not yet demonstrated. We propose a so-
lution to this shortcoming, and demonstrate the robustness,
and competitiveness of our approach in this work.

Generator Inversion. To facilitate editing of real images,
the images first need to be projected into the StyleGAN la-
tent space. This is also referred to as GAN inversion [46]
and the problem is to find a latent code that, when passed
to the generator, produces an image as close as possible
to the given target image. Typically GAN inversion tech-
niques are either based on training an encoder [2,26,30,37],
which can embed an image into latent space at inference
time, or optimization-based techniques [21, 28, 29, 42]. In
the latter approach, the latent code is found by minimizing
a loss function, typically pixel-wise L2 or perceptional im-
age similarity [44] is used. Hybrid approaches have also
been proposed which use a trained encoder to find a good
initial condition for subsequent iterative optimization of the
latent code [23, 45].

Recently, [31] shows that novel images can be embed-
ded into W space with a lower reconstruction error by fine-
tuning the pre-trained generator on the target image such
that the latent code in W space yields an image closer to the
target.

Recent work [37] suggests that there is a trade-off be-
tween distortion and editability when selecting which latent
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Figure 2. Diagram of our method. We first project a facial expres-
sion database intro the W` space of StyleGAN. We then use the
HOSVD to factorize the latent representation of the data in order
to derive meaningful semantic subspaces. From the subspaces we
define a set of global editing directions in W` corresponding to
yaw rotation and each of the six basic emotions.

space to project a given target image into. When projecting
out-of-domain images into the StyleGAN latent space pick-
ing the extended W` space leads to a higher quality recon-
struction, i.e, it yields an image closer to the target image.
However, latent codes in the W` space are generally less
editable than latent codes in W space. To find latent codes
with the optimal trade-off between distortion and editabil-
ity a novel training methodology was proposed [37] which
embeds images into W` space in a way that constrains the
latent codes to be as close to W space as possible.

Contributions. Our contributions can be summarized as
follows

• We show that a HOSVD-based tensor model is able
to discover novel semantic directions robustly, cor-
responding to the six prototypical emotions, in pre-
trained GANs.

• We show that convincing emotion directions can be de-
rived by truncating the expression intensity subspace.

• We show that, by using the e4e encoder [37] for pro-
jecting real images into the latent space of StyleGAN,
it is possible to construct a tensor model which enables
stable rotation and expression transfer on real faces.

• We show the previously proposed tensor model for the
GAN latent space [16] had an implicit rank-one con-
straint, which can be relaxed, leading to lower recon-
struction error.

2. Method

In this section, we describe tensor model formulation
[16] and propose two extensions to it: (1) We show how
to relax the implicit rank-one constraint of the model by
replacing the set of parameter vectors of the model with a
single full rank parameter tensor, and (2) show how to de-
rive emotion directions in W` by truncating the expression
intensity subspace. An overview of our approach is shown
in Fig. 2.

2.1. Multilinear Tensor Model

Given a data set of StyleGAN latent codes in W` we
represent them so that each latent code is equivalent to a
vector w P RD, where D “ 9216 for the generator produc-
ing 1024ˆ 1024 images. Suppose we have latent codes for
P different persons, performing E expressions each with I
different intensities from R different rotations, then we ar-
range the data into the 5th order tensor T P RDˆPˆEˆIˆR.
We then proceed to calculate the Higher-Order Singular
Value Decomposition (HOSVD) on the mean-centered data
tensor as

T ´ sT “ S ˆ1 U1 ˆ2 U2 ˆ3 U3 ˆ4 U4 ˆ5 U5, (1)

where S is the core tensor and ˆn denotes the n-mode ten-
sor matrix product. The mean tensor is written as sT “

swb 1P b 1E b 1I b 1R, where sw is the mean latent code
from the data set, 1P is a vector of ones with dimension P ,
and b denotes the tensor product. The Ui matrices have
orthonormal columns, i.e., UT

i Ui “ I and are constructed
from the left singular vectors of the mode-n matrix unfold-
ings of the mean-centered data tensor. The columns of Ui

form the basis for the respective subspace. The columns of
U1 form a basis for the latent space and are identical to the
principal components [15]. Likewise U2, U3, U4, and U4

form the bases for the person identity, expression, intensity
and rotation subspaces respectively.

Parameter Vectors. To recover a specific latent code
from the tensor model, we select appropriate rows of U2,
U3, U4 and U5 corresponding to the desired person, ex-
pression, expression intensity, and rotation respectively. By
introducing one-hot vectors q1i which we will refer to as the
canonical parameters for the tensor model, we get

pw “ sw ` C ˆ2 q
1T
2 U2 ˆ3 q

1T
3 U3 ˆ4 q

1T
4 U4 ˆ5 q

1T
5 U5,

(2)

where C “ S ˆ1 U1. This formulation is analogous to the
one proposed in [14, 15] and subsequently, [16]. Now, (2)
can be further simplified by defining qT

i “ q1
T
i Ui which

allows us to write

pw “ sw ` C ˆ2 q
T
2 ˆ3 q

T
3 ˆ4 q

T
4 ˆ5 q

T
5 , (3)

which gives is a more compact representation of the tensor
model.

Recovering Subspace Parameters. To find the parame-
ters pq2,q3,q4,q5q for a novel latent code w, with corre-
sponding to the latent code pw which best approximates w,
one could minimize the L2 loss,

Lpq2,q3,q4,q5q “ ||pwpq2,q3,q4,q5q ´w||22. (4)
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Additionally, it has been proposed in [14] to regularize the
solution by the Tikhonov regularizer and sum constraint as

Rpq2,q3,q4,q5q “

5
ÿ

i“2

”

λ1,i||q
1T
i ||

2
2 ` λ2,ipq

1T
i 1´ 1q2

ı

,

(5)

that yields the regularized minimization problem

min
q2,q3,q4,q5

Lpq2,q3,q4,q5q `Rpq2,q3,q4,q5q. (6)

This regularization is important for finding a stable param-
eter vector representations and thereby enables expression
editing for latent codes corresponding to novel images, as
will be seen below.

Relaxing the Rank-One Constraint. In the tensor model
(3), each latent code is entirely determined by four param-
eter vectors q2, q3, q4 and q5 corresponding to identity,
expression, expression intensity and rotation, respectively.
Using component notation and the Einstein summation con-
vention we rewrite (3) as

pwi “ swi ` Cijklmq
p2q
j q

p3q
k q

p4q
l qp5qm , (7)

where Qjklm “ q
p2q
j q

p3q
k q

p4q
l q

p5q
m is a rank-one tensor.

Now, we propose to relax this implicit rank-one con-
straint and instead allow the tensor Qjkl to be full rank that
leads to the problem

min
Q
||pwpQq ´w||22. (8)

The relaxation increases the number of parameters of the
tensor model from P ` E ` I ` R parameters to PEIR
parameters. This results in a more flexible model which
yields lower reconstruction errors for novel latent codes.

2.2. Truncating the Expression Intensity Subspace

From (1), the expression intensity subspace is truncated
to a one-dimensional subspace by selecting the dominant
singular vector, i.e., the first column of U4 which we denote
ru4. The truncated core tensor is then written as

rS “ pT ´ sT q ˆ1 U
T
1 ˆ2 U

T
2 ˆ3 U

T
3 ˆ4 ru

T
4 ˆ5 U

T
5 . (9)

Defining rC “ rS ˆ1 U1 as before, then the model is written
similarly to (2) and (3) as

pw “ sw ` rC ˆ2 q
1T
2 U2 ˆ3 q

1T
3 U3 ˆ4 q

1T
4 ru4 ˆ5 q

1T
5 U5,

(10)

where the corresponding intensity parameter q1T4 ru4 “ q4
is a scalar since the expression intensity subspace has been

truncated. Thus, the expression intensity factors out of the
model and we may write

pw “ sw ` q4p rC ˆ2 q
T
2 ˆ3 q

T
3 ˆ5 q

T
5 q, (11)

where q4 can now be interpreted as the expression intensity
parameter. We trivially unfold the singleton dimension of
rC corresponding to the intensity subspace, i.e., rCijklm Ñ

rCijkm and then write the model as

pwi “ swi ` q
p4q

rCijkmq
p2q
j q

p3q
k qp5qm . (12)

2.3. Recovering Semantic Directions

Emotion Directions. We define emotion directions in la-
tent space by selecting an appropriate row qexpr

3 of U3 cor-
responding to the emotion of interest. The combined pa-
rameter tensor corresponding to an expression direction is
then written as

Q(expr) “ sq2 b qexpr
3 b sq5, (13)

where sq2 and sq5 is the mean person and rotation parame-
ters respectively. To change the expression of a given latent
code w, we interpolate linearly in the direction given by the
vector n(expr) with components

n(expr)
i “ rCijkmQ

(expr)
jkm , (14)

thus performing an expression edit as

w(expr)
edit “ w ` q4n

(expr). (15)

Rotation Direction. We edit rotations in a similar way.
First we select the mean person, expression and expression
intensity parameters sq2 sq3 and sq4 and then define the ro-
tation direction parameter qprotq

5 as the difference between
the parameters corresponding to the left and right rotations,
i.e., the difference between the two rows of U5. We write
the rotation direction parameter directly as

q
protq
5 “

1
?
2

„

1
´1

T

U5. (16)

Now the combined rotation direction tensor is written as

Q(rot) “ sq4psq2 b sq3 b q
protq
5 q, (17)

and we can change the rotation of a latent code as

w(rot)
edit “ w ` βn(rot) with n(rot)

i “ rCijkmQ
(rot)
jkm, (18)

where β is the strength of the rotation.
With this formulation, we apply semantic edits directly

in W`without the need for estimating the tensor model pa-
rameters beforehand as has otherwise been suggested [16].
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(a) (b) (c)

Figure 3. Image embeddings. (a) BU-3DFE images, (b) random samples from the generator, and (c) real images. The embeddings of the
original images are shown in the top row, the parameter vector embeddings in the middle, and the parameter tensor embeddings in the
bottom row.

3. Experiments

Our tensor model was trained with the latent space pro-
jection of images from the Binghamton University 3D Fa-
cial Expression database (BU-3DFE) [43]. The BU-3DFE
database contains 2500 3D face scans and corresponding
images from two views of 100 persons (56 female and 44
male) with varying ages (18-70 years), and diverse eth-
nic/racial ancestries. Each subject was asked to perform
the six basic emotions: anger, disgust, fear, happiness, sad-
ness, and surprise, each with four levels of intensity. Ad-
ditionally, for each participant, a neutral face is provided.
Hence, for each person, there are 25 facial expressions in
total, recorded from two pose directions, left and right, re-
sulting in 5000 face images. Additionally, we used the FEI
face database [36] which contains 14 images of each of the
200 individuals, 100 male and 100 female. For each the
database contains two frontal images, one with a neutral or
non-smiling expression and the other with a smiling facial
expression, the rest of the images depicts each individual
with a neutral expression from various yaw rotations.

3.1. Implementation Details

We use the full resolution, i.e. 1024ˆ 1024, StyleGAN2
[19] generator which has been pre-trained on FFHQ [20].
The tensor model was implemented in PyTorch [24] using
tntorch [3] to calculate the HOSVD. To estimate the tensor
model parameters we used gradient descent implemented in
PyTorch with the Adam optimizer. For comparing images
we use two different metrics. For perceptual image similar-
ity we use LPIPS [44] and for identity similarity we uses Ar-
cface [9]. To measure the pose of the generated images we
uses MediaPipe [22] to extract 2D and 3D landmarks and
then proceeded to solve the Perspective-n-point (PnP) [11]
problem which gave us a scalar value for the yaw rotation
of a given image. We embedded all images into W` space
using the e4e encoder [37].

Table 1. Comparison of reconstruction error ||pw´w||22 by repre-
senting randomly sampled latent codes and latent codes from the
BU-3DFE data set with parameter vector and a parameter tensor
respectively.

Random Latents BU-3DFE Latents

Rank one p12˘ 3q ˆ 102 p1.7˘ 0.2q ˆ 102

Full rank p6˘ 1q ˆ 102 7˘ 1

3.2. Subspace Parameter Recovery

We computed estimated the tensor model parameters for
3 types of novel latent codes: 1) BU-3DFE latent codes
where we left one person out in the calculation of the tensor
model, 2) randomly sampled latent codes, and 3) real im-
ages projected into latent space. Fig. 12 shows the result of
recovering the tensor model parameters for these three types
of latent codes when recovering the parameters in vector
and tensor form, respectively. It can be seen that using pa-
rameter vectors for the tensor model led to a significant re-
construction loss if compared to using a representation with
a parameter tensor, as illustrated in Fig. 4 and quantified
in Tab. 1. It seems that the randomly sampled images are
slightly harder to reconstruct than the embedded real im-
ages.

For the representation with parameter vectors, we find
that although the proposed regularization (5) leads to a
slightly higher reconstruction error, it is important in or-
der to find parameter vectors which are suitable for expres-
sion editing. Fig. 5 shows that performing expression edits
on the regularized parameters leads to less identity change
compared to the non-regularized parameters. The impor-
tance of regularization is more noticeable when we recover
the parameters for a randomly generated image if compared
to an image contained the in BU-3DFE database.

Moreover, it can be seen that the tensor model is not nec-
essary for expression editing, because we can edit the latent
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Figure 4. Representing a latent code in the tensor model with pa-
rameter vectors with and without regularization compared with a
representation using a parameter tensor.

(a) Without regularization.

(b) With regularization.

Figure 5. Visual comparison of the effect of regularization for
expression editing using parameter vectors for the tensor model.

Figure 6. Direct edit in the W` space without prior estimation of
the model parameters.

code directly by perturbing in the directions defined by (15),
instead of manipulating the estimated parameters of the ten-
sor model. The effect of such a direct edit is illustrated in
Fig. 6. The main advantage of performing expression edits
in this way, is that we avoid the reconstruction error associ-
ated with representing the latent code in terms of the tensor
model parameters.

3.3. Expression Direction Recovery

Fig. 7 shows the effect of applying the found six latent
space directions to the BU-3DFE mean face. We found that
subtracting the sadness direction from the mean face also

produces a happy facial expression. However, the resulting
expression is qualitatively different from adding the happy
direction to the mean face. While adding the happy direc-
tion results in a wide smile, subtracting the sadness direc-
tion results in a smile that is narrower but where the mouth
is more open. See the supplementary materials for videos
showing the found emotion directions on real face images.

3.4. Comparison to Related Work

We compared the rotation and smile directions found
by our approach to those previously found by InterFace-
GAN [33] and GANSpace [17]. For InterFaceGAN, we
used the PyTorch version of the rotation and smile direc-
tions provided by the authors of [31] at their GitHub repos-
itory1. For the rotations, we chose a manipulation strength
that resulted in a similar degree of rotation. To perform rota-
tions with GANSpace [17], we initially used the 2nd princi-
pal component applied to the first three style vectors. How-
ever, we found that if we only changed the first three style

1https://github.com/danielroich/PTI/tree/main/
editings/interfacegan_directions

Figure 7. Effect of applying the direction corresponding to the six
prototypical expressions to a real image. The rows show the differ-
ent expressions determined by q3 while the strength is modulated
by q4, while the rotation parameters q5 remain unchanged. The
right column shows edits in the direction of the respective expres-
sion while the left column illustrates the subtraction of it.
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Figure 8. Comparison of rotations produced by GANSpace [17]
(top 2 rows), InterFaceGAN [33] (third row) and our approach
(bottom). Here GANSpace* refers to a manipulation where we
edit the first five style vectors rather than the first three as described
in the main text.

vectors to edit the rotation, the result tends to break down
when the editing strength is large, which is demonstrated in
the first row in Fig. 8. If we applied the edit to the first five
style vectors instead, we generally received better results,
see second row in Fig. 8.

We visually compared the rotations by GANSpace, In-
terFaceGAN and our proposed method on images which
are randomly sampled from the generator as well as images
from the FEI face database [36]. For the FEI database we
used the frontal face images as initial conditions and then
applied rotations with GANSpace, InterFaceGAN and our
method to approximate the latent codes corresponding to
rotated images from the database. The results on randomly
sampled images are shown in Fig. 8 and on the FEI database
in Fig. 9, respectively. It can be seen that the quality of the
edits are visually on par, except the gaze direction follows
the camera in the InterFaceGAN results.

3.5. Happy Faces

We compared the found happiness direction to the smile
directions from GANSpace and InterFaceGAN, respec-
tively. For GANSpace we used the 47th principal compo-
nent applied to the 5th and 6th style vectors. The results are
shown in Fig. 10. Although each method resulted in a smile
in the generated image, the style of smile is different. Our
method yielded a wider smile whereas GANSpace yielded
a smile with a larger mouth opening, while the smile by In-
terFaceGAN seems to fall between these two.

3.6. Face Frontalization

To experiment face frontalization, we started with the la-
tent codes corresponding to the rotated images in the FEI
database [36], then edited the yaw of latent code to frontal-
ize the images. Quantative comparison is shown in Fig. 11.
In Tab. 2, we compare the perceptual and identity similar-

Figure 9. Qualitative comparison of the found rotation direction
with the equivalent edits from InterFaceGAN [33] and GANSpace
[17] applied on the FEI face database [36].

Figure 10. Visual comparison of editing a randomly sampled latent
code in the smiling directions found in GANSpace [17] and Inter-
FaceGAN [33] with the happiness direction found in this work.

ity scores of the frontalized images to the ground truth. It
can be seen the frontalized images are very similar to the
result obtained by using the pose direction from InterFace-
GAN. However, our method yielded better similarity scores
against to the ground truth. In addition, the gaze direction
by InterFaceGAN is not straight ahead whereas ours is.
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Figure 11. Qualitative comparison of facial frontalization with In-
terFaceGAN [33] and our method on FEI face database [10].

Table 2. Comparison of perceptual and identity similarity scores
of facial frontalization of images from the FEI face database with
InterFaceGAN [33] and our method. The results are reported as
mean value ˘ standard error of the mean.

LPIPS [44] ArcFace [9]

InterFaceGAN 0.315˘ 0.003 0.402˘ 0.008
TensorGAN 0.305˘ 0.004 0.372˘ 0.008

3.7. Validation with expression classifier

To validate that the semantic directions recovered with
our approach produce a change in the generated images cor-
responding to the intended labels, we use a pre-trained ex-
pression classifier [8] which is trained on the FER2013 data
set [13]. We sampled 5 ˆ 103 random images with vary-
ing expressions from StyleGAN and edited these in the di-
rection of each basic emotion. Using the classifier, we ob-
tained the probability mass distribution of expressions for
the sampled and edited images. From this, we calculated
the average difference in probability mass due to the edit
and visualize the results with a heatmap in Fig. 12.

The edits in the direction of anger, happiness, sadness,
and surprise lead to changes in the class probabilities which
corresponds to an increase in probability of the expected
class labels. However, the edits in the disgust direction lead
to an increase in probability for anger as well as disgust
while edits in the fear direction leads to a larger probability
mass for the surprise label. This is explained by the fact that
PyFeat also classifies the BU-3DFE raw images in a similar
way as can be seen in the confusion matrix in Fig. 13. Thus,
this discrepancy is not due to a limitation of our model, but
rather due to systematic differences between the BU-3DFE
and FER2013 data sets, which are especially apparent for
data points annotated with the fear or disgust labels.

4. Conclusion
In this work, we have presented an extension of the

HOSVD-based tensor model, proposed in [16]. In contrast
to [16], (1) we use the e4e encoder [37] to recover highly

Figure 12. Heatmap of the average difference in expression prob-
ability masses due to expression edits with our approach. Note
that Fear increases the probability mass for Surprise and Disgust
increases the probability mass for Anger. The reason is explained
in the main text.

Figure 13. Confusion matrix showing the Pyfeat classifica-
tion results on BU-3DFE. It shows that the correlation between
Fear/Surprise and Disgust/Anger is not due to a limitation of our
model, but can attributed to the differences between the BU-3DFE
and FER2013 data sets.

editable latent codes for the BU-3DFE database, (2) we im-
prove reconstruction in the tensor model by allowing the pa-
rameters to be full-rank, and (3) we show that edits can be
applied directly in latent space. Further, we showed that we
can calculate linear directions in latent space corresponding
to the six prototypical emotions by truncating the emotion
intensity subspace. After obtaining a latent representation
of the data, constructing the tensor model is fast, requiring
only a few minutes to calculate the HOSVD. Further, the
latent space directions corresponding to the six prototypi-
cal emotions can be calculated from the tensor model and
subsequently applied to any latent code in the original la-
tent space without the need to first estimate the subspace
parameters as otherwise suggested in [16]. In other words,
the found semantic directions are global and can be applied
to any latent code without any further calculations. Our
method is able to identify directions in latent space corre-
sponding to yaw rotation, as well as each of the six ba-
sic expressions. The quality of the edits performed with
these directions is on par with the corresponding edits using
GANSpace [17] and InterFaceGAN [33].
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