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Abstract

This paper presents TemPose, a novel skeleton-based
transformer model designed for fine-grained motion recog-
nition to improve understanding of the detailed player ac-
tions in badminton. The model utilizes multiple tempo-
ral and interaction layers to capture variable-length multi-
person human actions while minimizing reliance on non-
human visual context. TemPose is evaluated on two fine-
grained badminton datasets, where it significantly outper-
forms other baseline models by incorporating additional
input streams, such as the shuttlecock position, into the
temporal transformer layers of the model. Additionally,
TemPose demonstrates great versatility by achieving com-
petitive results compared to other state-of-the-art skeleton-
based models on the large-scale action recognition bench-
mark NTU RGB+D. Experiments are conducted to explore
how different model parameter configurations affect Tem-
Pose’s performance. Additionally, a qualitative analysis of
the temporal attention maps suggests that the model learns
to prioritize frames of specific poses relevant to different
actions while formulating an intuition of each individual’s
importance in the sequences. Overall, TemPose is an intu-
itive and versatile architecture that has the potential to be
further developed and incorporated into other methods for
managing human motion in sports with state-of-the-art re-
sults.

1. Introduction

Badminton is a fast-paced racket sport that requires a
high level of skill, athleticism, and tactical awareness. As
the sport’s popularity grows, the need for objective and
data-driven methods for evaluating player performance has
become increasingly important. One area of particular in-
terest uses automatic analysis, specifically human action
recognition (HAR), to provide insights into a player’s per-
formance [13] and inform decision-making in the sport.
Fine-grained action recognition deals with action classes

closely related in both type (e.g. badminton strokes) and
motion (i.e., strokes may look similar) and is appropriate
for highly technical sports disciplines that require high pre-
cision and accuracy in movement execution. The required
attention to detail in badminton results in small and sub-
tle differences in how players execute specific movements,
which are difficult to capture using RGB-based methods
[42]. Skeleton motion as a primary feature in fine-grained
action recognition has been effective in various sports disci-
plines [8, 17], including badminton [19, 21]. Skeleton-data
provides a detailed representation of the body movement
through spatiotemporal sequences of joint and bone posi-
tions, which enables extracting features crucial for recog-
nizing specific actions and movements, even those that may
be subtle or difficult to detect with traditional imaging tech-
niques. While existing methods for skeleton-based action
recognition have achieved good results on controlled action
benchmark datasets [23, 39], many tend to lack robustness
and scalability for real-world applications. In an approach
to address this issue, recent research has explored the use
of transformer models, which have shown excellent capa-
bilities in natural language processing (NLP) [7] and image
segmentation [9, 14], to model sequential data for video ac-
tion recognition [1, 18, 22].
This paper presents TemPose, a new skeleton-based trans-
former model designed for fine-grained motion recognition
in badminton. The model offers several significant contri-
butions, including a novel factorized transformer model that
combines temporal and interaction layers, multi-person in-
teraction modeling, and improved recognition rates using
fewer parameters. The proposed action recognition model,
TemPose, is outlined in Figure 1. The model takes processed
skeleton data as input and passes it through a sequence of
transformer layers in the TemPose encoder. This process
creates tokens of the temporal data and captures the tem-
poral body dynamics and sequential interactions between
an arbitrary number of people involved in the action. The
MLP head at the top predicts the action based on the in-
formation embedded in a class token. The primary and
badminton-specific version of the model includes the fu-
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Figure 1. Illustration of our proposed action recognition framework, TemPose. The framework uses human skeleton data, consisting of
joint and bone information, and incorporates additional features such as player court position and shuttlecock position from a badminton
action (e.g., smash). The TemPose encoder, composed of multiple transformer layers, processes the input to embed relevant features into
a class token. Finally, an MLP head utilizes these features to predict the action class. The composition of the MLP block is shown in the
upper right corner.

sion of skeleton-data with player court positions (CP) and
shuttlecock position (SP). We exhaustively test two differ-
ent versions of TemPose, where the additional modalities
are integrated at different stages of the TemPose encoder.
In one version (TemPose-NF), the CP and SP sequences
are tokenized and appended to the embedded skeleton-data
before the interaction transformer layers. Figure 2 depicts
TemPose-NF. The other version (TemPose-TF) prioritizes
an early fusion of the skeleton, SP, and CP modalities.
An overview of related work is provided in Section 2, fol-
lowed by a description of pose and shuttle estimation, pre-
processing, and the model architecture in Section 3. The
experimental results on fine-grained badminton datasets
are presented in Section 4, along with testing on a stan-
dard benchmark action recognition datasets NTU RGB+D
[20, 32]. The paper concludes with a qualitative analysis
of the information stored in the different transformer layers
and future works in 5.

2. Related Work

Action recognition in sports Most work on action recog-
nition in badminton uses convolutional neural network
(CNN) architectures for feature extraction on RGB images
[29–31]. Decision-making algorithms like Support Vector

Machines then use the extracted features to make predic-
tions. Other approaches involve using handcrafted features
such as Histogram of Oriented Gradients, along with tem-
poral convolutional networks (TCN) to process the action’s
spatial and temporal aspects [5, 13]. Instead of using im-
age data, skeleton data has been successfully used for the
analysis and recognition tasks of other sports, such as Tai
Chi [8, 10, 36] and fencing [26, 42]. But despite its poten-
tial, skeleton poses have yet to be thoroughly tested for bad-
minton tasks. In one recent example [21], skeleton data is
used in a gated recurrent unit (GRU) model to perform bi-
nary hit detection. However, like other recurrent models,
GRUs can struggle with training issues. This paper pro-
poses an architecture more suited for utilizing skeleton data
for badminton recognition tasks.

Human-action recognition using skeleton data. Graph
convolutional networks (GCN) are a popular method for
skeleton-based action recognition [35, 40]. GCNs uses
nodes to represent every human joint at every time. Con-
necting nodes, both spatially and temporally, to the other
nodes with edges allows GCNs to capture both spatial and
temporal aspects of human motion. Spatio-temporal GCNs
have demonstrated promising results for skeleton-based ac-
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tion recognition [23, 39, 40], but they also possess some
limitations. One limitation is their limited ability to model
long-term dependencies in complex actions, as they typi-
cally use a fixed-length temporal window. Moreover, they
are sensitive to missing data [41] and require a carefully
designed graph structure based on the recognized actions’
characteristics, which can be challenging. CNNs are also
commonly used for analyzing skeleton data. One approach
is to stack heatmaps along the temporal dimension into a 3D
input and use 3D-CNNs to extract information [3,11]. Other
studies, such as [17, 42], generate a temporal sequence of
joint coordinates and use TCNs to encode the information.

Transformers for human action recognition. The emer-
gence of ViT [9] has led to many applications of vision
transformer backbones [2, 22, 37, 38]. Including vision
transformers [1, 12, 18, 22] used for HAR. These works are
typically trained on Kinetics-400 [16] to mitigate the issue
involved with over-fitting. But only a few works have con-
sidered transformers on other modalities than RGB data, in
our case, skeleton data. Utilizing transformer based mod-
els on skeleton data has, however, been attempted in other
recent work. [28] combines self-attention with a GCN and
TCN to model spatial and temporal attention. Similarly,
[27] performs temporal encoding of the skeleton poses with
a sequence of temporal transformer layers.
Unlike previous work, we present a factorized transformer
encoder. Embedding individual skeleton data into temporal
and interaction tokens allows the method to encode infor-
mation about the motion of multiple people across the entire
sequence length.

3. Model
This section first outlines the extraction process for the

skeleton, CP, and SP data. We introduce the temporal trans-
former layer module for a single individual and subsequent
action prediction. Subsequently, the model is extended to a
factorized temporal and interaction encoder, which embeds
information about the interaction between individuals in the
class token. Last, we describe two methods of incorporating
CP and SP data into the model.

3.1. Extraction of the skeleton, player position, and
shuttlecock data

A visual representation of the skeleton-data retrieval is
shown in Figure 3. In a video sequence with T frames,
the poses of a person are given by the sequence P =
[P1, . . . , PT ]

T ∈ RT×2J . A pose Pt ∈ RJ×2 in frame t

is represented by J keypoints (x
(t)
i , y

(t)
i ), where x

(t)
i and

y
(t)
i are 2D joint coordinates for the joint i. The bones
Bt ∈ RB×2 in frame t are represented by the keypoint dif-
ferences (x(t)

i −x
(t)
j , y

(t)
i − y

(t)
j ), where i and j are specific

Figure 2. Illustration of TemPose encoder shows the factorized
transformer structure. First, the temporal token for each person is
encoded by the temporal transformer layer. Second, The interac-
tion between actors is modeled based on the temporal context of
each person.

joint pairs that make up the human bones. The final skeleton
data sequence, S, of an individual, is defined to be

S = [[P1, B1], . . . , [PT , BT ]]
T ∈ RT×2(J+B) (1)

The pose extraction pipeline consists of two stages using
tools from previous studies, including [4, 6] to detect hu-
mans and perform pose estimation. We employ HRnet [33],
a pre-trained framework, to estimate the 2D poses. How-
ever, irrelevant individuals, such as spectators in the crowd,
can limit the quality of the skeleton data. To address this
issue in badminton, we calculate a homography using the
court’s known dimensions and map the feet of the detected
individuals to the ground plane. By doing so, we only con-
sider skeletons within the court and can identify each se-
quence’s top and bottom player. In cases where a whole
skeleton is missing, we replace it with the pose from the
previous frame. Finally, we normalize the poses by center-
ing them and scaling them to have a bounding box diago-
nal of 1. Additionally, we sample the players’ 2D ground
plane feet position (i.e., CP) for each time frame as an ad-
ditional input feature. The sequence PC is represented as
∈ RT×2. The shuttlecock’s position holds valuable infor-
mation for categorizing the different strokes in badminton.
To extract the shuttlecock’s position, we use a pre-trained
model from [34] to obtain its image coordinates in each
frame of the video, represented as (u, v, c), where u and
v are the image coordinates of the shuttlecock, and c is the
confidence of the prediction. We only consider predictions
with a confidence score above 0.75; we pad failed predic-
tions with zeros.
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Figure 3. The figure illustrates the input data utilized by our pro-
posed action recognition framework, TemPose. The framework
takes in centered and normalized skeleton data of the badminton
players, along with their court position and the scaled position of
the shuttlecock, all of which are extracted from RGB video in-
put. Specifically, HRNet [33] estimates the poses of the badminton
players, while TrackNet [34] estimates the position of the shuttle-
cock.

3.2. Skeleton-based temporal self-attention for ac-
tion prediction

As a first step, we consider a single-person sequence
without the interaction layers from Figure 2. The skeleton
data is mapped through a linear projection to a sequence of
temporal tokens [x1, . . . , xT ]

T ∈ RT×DL , where each to-
ken xt ∈ RDL is the vector representation of the skeleton at
that particular time frame. A learnable temporal embedding
ET ∈ RT+1×DL is added to the tokens to capture the under-
lying temporal structure better. The sum of the embedding
and projection yields x, the input of the transformer layers.
x is formally defined as

x = [xcls,Linear(S)]T + ET (2)

= [xcls, x1, . . . , xT ]
T + ET ,∈ RT×DL (3)

where xcls ∈ RDL is a learned class token, DL is the di-
mension of the embedded feature space, and Linear is a
learned linear projection. The representation of xcls at the
final transformer layer is used by the MLP head to make
predictions. The tokens defined in (3) are then passed
through transformer layers, where L is the transformer
depth. To distinguish between the tokens at different layers,
we define them as x(l) after having passed through layer
l. Each layer is composed of a multi-head self-attention

(MHSA), layer normalization (LN), and a multi-layer per-
ceptron (MLP), which consists of two linear projections
only separated by a GELU activation [15] and dropout, see
Figure 1. The design of a single transformer layer is il-
lustrated in Figure 4 on the left. The transformer block is
described by Equation 4 and Equation 5

x̃(l+1) = x(l) + MHSA(LN(x(l))), (4)

x(l+1) = x̃(l+1) + MLP(LN(x̃(l+1))), (5)

where x̃(l+1) is the in-between embedded obtained after the
self-attention module. The following equation describes a
single head of self-attention

Attention(Q,K, V ) = softmax
(
QKT

√
DK

)
V, (6)

where Q = WQx
(l) ∈ RT×DA , K = WKx(l) ∈

R(T+1)×DA , and V = WV x
(l) ∈ R(T+1)×DA are learned

linear projections of the input sequence that respectively
represent the current token, the other tokens, and their asso-
ciated values, used to calculate attention scores and output.
After scaling and softmax activation of the input variables,
(6) serves as an attention map that provides temporal con-
text to the value-array V , where DA is the attention head
latent dimension. The output of the MHSA yields Nheads

value vectors V weighted by the temporal attention maps.
As illustrated in Figure 4, these weighted value vectors are
concatenated and mapped to the updated representation of
the temporal tokens x̃(l+1) with another learned linear pro-
jection. Note that the number of transformer layers L is an
adjustable hyperparameter.
Finally, the class token xL

cls is fed to an MLP block to pre-
dict the action category of the samples

xact = MLP(xcls), (7)

where xact ∈ RDcls is the model prediction, and Dcls the
number of different action categories.

3.3. Factorized temporal and interaction structure

Actions in video sequences often contain multiple peo-
ple (e.g., two people in badminton singles matches) making
different subactions and movements in parallel and often
reacting to the other people involved in the action. Hence,
in the TemPose encoder, we want to account for multiple
people and their actions. TemPose utilizes a factorized en-
coder structure of transformer layers, inspired by ViViT [1],
to model the interaction between people. Figure 2 depicts
the TemPose encoder. The model consists of 1.) a tem-
poral transformer layer that captures the temporal interac-
tion between poses extracted from the same person, identi-
cal to the temporal structure outlined in section 3.2. How-
ever, the temporal encoding is now performed in parallel
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Figure 4. Illustration of transformer layers to the left. The struc-
ture of the transformer layers is identical for the temporal and in-
teraction transformer layers. The right block shows the composi-
tion of a single-head self-attention module. The Mask leaves out
the (zero) padded temporal and interaction tokens in the attention
map, which allows the model to handle action sequences of vary-
ing lengths proficiently.

for up to N people involved in the action sequence, see
Figure 2. As a result, the class token notation x

(l)
cls is up-

dated to τ
(lT )
cls,n. τ

(lT )
cls,n is the temporal class token for per-

son n ∈ {1, . . . , N}, at temporal layer lT 2.) After being
processed by all LT temporal layers, the N temporal class
tokens are concatenated to [τ

(LT )
cls,1 , . . . , τ

(LT )
cls,N ], prepended

with a interaction class token ηcls, and assigned an inter-
action embedding EI identical to the step of Equation 3.
Summing up the input for the interaction encoder becomes

z = [ηcls, τcls,1, . . . , τcls,N ]
T
+ EI ,∈ RT×DL . (8)

Subsequently, the input tokens, z, are passed through LN

transformer layers to capture interactions between the em-
bedded temporal class tokens of people participating in the
action. An MLP head uses the final representation of the in-
teraction classification token η

(LN )
cls ∈ RDL , see Equation 7,

to predict the action class.

3.4. Player and shuttlecock position infusion

This section discusses two configurations for integrating
badminton-specific CP and SP data into the encoder.

Temporal fusion: In the first fusion configuration, the SP
and CP input data passes through separate TCN blocks con-
sisting of two 1D-convolutional layers separated only by a
GELU activation and dropout. The two layers have dila-
tion 1 and 3, respectively, with a kernel size of 5 and stride
1. Through the TCN block, the channels (i.e., dimension-
ality) of SP and CP data are increased to the embedded di-
mension of the transformer layers DL. The two new input
streams are then appended to the transformer input equiva-
lent to adding additional people (see Figure 2). The remain-

ing architecture is identical to factorized encoder described
above.

Interaction fusion In a different approach, the CP and SP
data are first incorporated into the TemPose encoder after the
temporal transformer layers. Here the SP and CP data are
flattened along the temporal and coordinate dimensions and
then separately passed through an MLP block. The result-
ing representations are appended to z in Equation 8, which
is then processed identically to the original TemPose archi-
tecture but with two additional interaction tokens. In the
experiments section, TemPose without fusion is referred to
as TemPose-V. In contrast, TemPose-TF and TemPose-NF
refer to temporal fusion and interaction fusion, respectively.

Temporal & multi-person padding A property of trans-
former architectures is the ability to handle sequences of
different lengths. We implement this for TemPose by al-
ways creating a set number of temporal tokens T , corre-
sponding to the maximal clip length for a video. Shorter
videos are padded with zeros and assigned pad tokens,
so they are not considered when calculating self-attention.
Specifically, the MASK step in the MHSA reduces attention
scores on the padded tokens to zero, see Figure 4. TemPose
extends this process by choosing an upper limit N of peo-
ple to model interactions from. Clips with fewer people are
padded with zeros and assigned pad tokens, so they are not
considered in the interaction attention.

4. Experiments
This section presents the results of our experiments to

assess the performance of the factorized transformer lay-
ers compared to other state-of-the-art skeleton-based hu-
man activity recognition models. Specifically, we evaluated
TemPose on two fine-grained badminton datasets [13] and
demonstrated the versatility of the architecture by including
experiments on the large-scale human motion dataset NTU
RGB+D [20, 32].

Badminton Olympics (Bad OL). A fine-grained bad-
minton dataset from 10 videos containing 15300 samples
from 13 classes of badminton strokes with the follow-
ing classes: top/bottom player forehand, backhand, smash,
lob, react strokes, and a none class. The train/test split
is match/video splitting, where all clips from one video
(match) are kept as the test set.

Dataset on Badminton Stroke Placement (Bad PL).
The dataset is confidential but contains 5500 samples of
backcourt badminton strokes categorized into either attack
or transport strokes. Additionally, the dataset includes in-
formation on the approximate location of the shuttlecock
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Table 1. Hyperparameters for the TemPose training procedure.
The right part of the table includes regularization and data aug-
mentation choices.

Training
Batch size 64
Optimizer AdamW
Warm-up 25%
Learning rate 1e-04
LR scheduler cosine decay

Regularization
Label smoothing 0.1
Flipping 30%
Random shifting 30%
Dropout 0.3
Weight decay 0.01

placement for each stroke grouped into three different ar-
eas, such as left backcourt or middle midcourt, resulting
in 12 different classes based on stroke type and placement.
The train/test splitting is done cross-matches.

NTURGB+D. Is a large-scale human action dataset col-
lected in a controlled setting. The dataset contains two ver-
sions, NTU-60 and NTU-120. NTU-60 has 57000 videos
categorized into 60 different actions. NTU-120 has 114000
videos belonging to 120 different categories. Test and train-
ing data can be split in three different ways: cross-setup
(XSet), cross-view (XView), and cross-subject (X-sub).

4.1. Implementation details

Table 1 list all settings and hyperparameters used for the
training procedure. The choice is made based on a ran-
domized search across the datasets. The AdamW optimiza-
tion algorithm [24] is used for all training runs along with
cosine-annealing [25]. Each training run is initialized with
a sequence of warm-up epochs, slowly increasing the learn-
ing rate linearly from 0 to prevent overfitting. Unless spec-
ified otherwise, joint and bone data, J and B, respectively,
are used together as skeleton data input.

4.2. Component studies

We analyze the individual components and different
model configurations of TemPose. Unless stated otherwise,
the performance is reported as classification accuracy on the
Bad OL dataset. The default configuration uses the depth
LT = LN = 2, Nheads = 6, embedded dimensions of
DL = 100 and DA = 128, and lastly, an MLP scale factor
of 4 between the input and hidden layers in MLP blocks.

Model configurations. To validate the multi-modal fu-
sion approaches of the CP and SP data, we examine the
performance of TemPose-V, TemPose-TF, and TemPose-NF
for many different model settings shown in Table 2. AcT
[27], a purely temporal skeleton-based model, is shown
as the baseline model. Among the TemPose versions,
TemPose-TF with DL = 100 and DA = 128 has the high-
est accuracy of 90.7% while only having 1.7 million param-
eters. The results suggest that temporal fusion of SP and CP

Table 2. Accuracy and model size for different settings of the 3
TemPose versions. The number of attention heads Nheads = 6
and depth LT = LN = 2 are shared for all model configurations.

Model configuration Params Acc
Baseline (AcT [27]) 2.1M 83.7%
TemPose-V

with (DL = 75, DA = 100) 0.9M 85.6%
with (DL = 200, DA = 200) 5.2M 83.6%

TemPose-TF
with (DL = 50, DA = 75) 0.5M 88.6%
with (DL = 100, DA = 128) 1.7M 90.7%
with (DL = 200, DA = 256) 6.7M 88.0%

TemPose-NF
with (DL = 50, DA = 75) 2.5M 88.1%
with (DL = 100, DA = 128) 3.8M 89.3%
with (DL = 200, DA = 256) 9.0M 86.2%

is the best approach, as it achieves the highest accuracy us-
ing the fewest parameters.

Exploring joint-bone skeleton data. We investigated the
impact of incorporating bone data into the joint data of the
skeleton on the Bad OL and NTU RGB+D datasets for Tem-
Pose without CP and SP input. The results are presented in
Table 3 and Table 6. Our findings are consistent with pre-
vious studies [11, 23]. The performance of TemPose sig-
nificantly improves by utilizing both bone and joint data as
input.

Importance of transformer depth. The effect of varying
transformer depth is a crucial aspect of transformer models.
Table 4 shows the results of a depth study on the TemPose-
TF model. The model settings are kept constant through-
out the study, except for the number of transformer layers,
and report the model’s performance for different combina-
tions of LT and LN . The results show that increasing the
transformer depth beyond a certain point leads to a drop in
performance. The best accuracy is achieved for the combi-
nation of LT = 2 and LN = 2, with a top-1 accuracy of
90.7%. Increasing the depth further to LT = 3 and LN = 3
leads to a significant drop in accuracy to 88.3%. The per-
formance continues to degrade as the depth is further in-
creased. The continued drop could suggest that the perfor-
mance continually worsens due to overfitting as the depth
is increased. Thus, the study exemplifies the importance
of finding the right balance between model complexity and
data size. The overfitting can possibly be attributed to issues
such as vanishing gradients or the relatively limited number
of training samples in the Bad OL dataset.
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Table 3. Joint + Bone architecture study

Models Acc
Baseline (AcT [27])

with (J) 81.8%
with (J+B) 83.7%

TemPose-V
with (J) 81.4%
with (J+B) 85.6%

Table 4. Transformer depth study of the TemPose-TF. The remain-
ing model settings are constant for the study, where DL = 100,
DA = 128, and Nheads = 6. The performance of TemPose drops
when the transformer depth increases.

Model Acc
TemPose-TF

with (LT = 1, LN = 1) 89.7%
with (LT = 1, LN = 2) 89.9%
with (LT = 2, LN = 1) 90.0%
with (LT = 2, LN = 2) 90.7%
with (LT = 3, LN = 3) 88.3%
with (LT = 4, LN = 4) 86.6%
with (LT = 6, LN = 2) 85.5%
with (LT = 2, LN = 6) 86.1%
with (LT = 6, LN = 6) 85.4%
with (LT = 8, LN = 8) 85.2%

Table 5. Top-1 accuracy results for TemPose with temporal (TF)
and interaction (NF) fusion, to state-of-the-art (HAR) models on
Badminton placement (Bad PL) and Badminton Olympics (Bad
OL).

Model Bad PL Bad OL Params
Bidirectional TCN [42] 80.4% 86.1% 4.1M
TCN Hog [13] 66.6% 77.0% 1.1M
ST-GCN [40] 72.3% 82.0% 3.4M
AcT-M [27] 77.9% 83.7% 2.1M
MS-G3D [23] 78.0% 83.2% 3.2M
TemPose-TF 83.9% 90.7% 2.2M
TemPose-NF 84.3% 89.3% 3.8M

4.3. Evaluation

Fine-grained sports action recognition - badminton.
Table 5 shows the Top-1 accuracy results for TemPose-TF
and TemPose-NF on two different Badminton datasets - Bad
PL and Bad OL. The table also includes results for other
state-of-the-art models on the same datasets. Overall, the
results show that TemPose outperforms all other models on
both datasets, with TemPose-TF achieving the highest ac-
curacy on Bad OL and TemPose-NF achieving the highest
accuracy on Bad PL. As observed in the configuration study,

both fusion approaches achieve strong results, and based on
our studies, no method is superior by a significant margin.
However, we conclude that TemPose can accurately be used
to classify the different types of movements in badminton.

Large-scale human action recognition. We showcase
the versatility of TemPose, by testing TemPose on other
more generic large-scale HAR benchmarks and comparing
TemPose-V to other top-performing skeleton-based actions
recognition models. Table 6 shows the results of TemPose-V
on the NTU datasets. Despite being slightly worse than MS-
G3D [23], and PoseConv3D [11] overall, TemPose achieves
competitive results to other state-of-the-art models on all
splittings of NTU RGB+D.

4.4. Qualitative analysis of temporal and interaction
attention

We examine the attention maps of the transformer layers.
To inspect what information is captured by the encoder. The
temporal attention maps of two forehand strokes shown in
Figure 6 reveal that similar patterns emerge between actions
of the same class. The similar attention maps suggest that
the model has learned to focus on specific temporal aspects
of the actions to predict the entire sequence.
The attention maps are used to determine a temporal and
interaction attention score for all actions. We define the at-
tention score as the self-attention of the xcls-token in the
last transformer layer, aggregated and normalized across all
attention heads. The temporal attention score is averaged
over all individuals but weighted according to their inter-
action attention score. For a badminton smash, the atten-
tion score is depicted in Figure 5. TemPose identifies the
frames around contact with the shuttlecock as the most sig-
nificant section. The red and purple text represent the target
and prediction class of the action, respectively. The model
accurately predicts the action as a smash from the bottom
player. Additionally, more attention is given to the smash-
ing individual. The logical distribution of attention suggests
that the model has developed the ability to gauge the rele-
vance of each individual for the action based on their skele-
ton movement.

5. Future prospects

TemPose demonstrates top results on badminton action
recognition tasks. However, in the experiments, the larger
configurations of TemPose show clear signs of overfitting.
The result indicates that the performance of TemPose may
be further improved if additional steps to combat overfitting
are taken. One prospect involves generating synthetic data
to increase the amount of training data.
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Table 6. Top-1 accuracy on the NTU RGB+D for state-of-art skeleton-based action recognition models.

NTU RGB+D 120 NTU RGB+D 120 NTU RGB+D 60 NTU RGB+D 60
(XSet) (XSub) (XSub) (XView)

ST-GCN [39] 73.2% 70.7% 81.5% 88.3%
ST-TR-agcn [28] 87.1% 85.1% 90.3% 96.3%
PoseConv3D [11] 89.6% 86.9% 93.7% 96.6%
MS-G3D [23] 88.4% 86.9% 91.5% 96.2%

TemPose-V (B) 85.1% 84.1% 91.0% 93.1%
TemPose-V (B+J) 88.5% 87.0% 92.7% 95.2%

Figure 5. Prediction and attention score produced by TemPose-V for a skeleton sequence from Badminton Olympics. (t,p) refers to t as the
target and p as the prediction. The interaction attention score is shown at the left, with the color corresponding to the person in the action
sequence. The weighted temporal attention score is shown atop each frame in the sequence. For visual clarity, the frames are grouped by
three, showing only the middle one, and the listed attention score is the average between them.

Figure 6. Temporal attention maps for a forehand by the bottom
player (from Bad OL). The distribution of attention shows that
TemPose prioritizes similar information when the actions are of
the same class. Additionally, the attention maps also show the
effect of the padding mask. The padding tokens are given no at-
tention.

6. Conclusion
TemPose is a new skeleton-based action recognition

model that uses temporal transformer layers to capture
human motion dynamics and factorized interaction trans-
former layers to model the interaction between humans.
The model outperforms existing methods in recognizing
fine-grained badminton actions by fusing shuttlecock data,
player court positions, and skeleton movements. It also
achieves state-of-the-art performance on a large-scale ac-
tion recognition dataset. Further studies will reveal how
well the general TemPose architecture applies to other ac-
tion recognition tasks.
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netv2: Efficient shuttlecock tracking network. In 2020 In-
ternational Conference on Pervasive Artificial Intelligence
(ICPAI), pages 86–91, 2020. 3, 4

[35] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal Segment
Networks: Towards Good Practices for Deep Action Recog-
nition. In European conference on computer vision, pages
20–36. Springer, 2016. 2

[36] Pengcheng Wang and Shaobin Li. Structural-attentioned
lstm for action recognition based on skeleton. In Other Con-
ferences, 2018. 2

[37] Wenxiao Wang, Lu Yao, Long Chen, Binbin Lin, Deng Cai,
Xiaofei He, and Wei Liu. Crossformer: A versatile vision
transformer hinging on cross-scale attention. In Interna-
tional Conference on Learning Representations, ICLR, 2022.
3

[38] Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vi-
tae: Vision transformer advanced by exploring intrinsic in-
ductive bias. CoRR, abs/2106.03348, 2021. 3

[39] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial In-
telligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.
1, 3, 8

[40] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. AAAI, 32, 2018. 2, 3, 7

[41] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu.
Robust graph convolutional networks against adversarial at-
tacks. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery &amp; Data
Mining, page 1399–1407, New York, NY, USA, 2019. As-
sociation for Computing Machinery. 3

[42] Kevin Zhu, Alexander Wong, and John McPhee. Fencenet:
Fine-grained footwork recognition in fencing. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 3588–3597, 2022.
1, 2, 3, 7

5208


