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Abstract

In this paper, we present an approach for combining non-
rigid structure-from-motion (NRSfM) with deep generative
models, and propose an efficient framework for discover-
ing trajectories in the latent space of 2D GANs correspond-
ing to changes in 3D geometry. Our approach uses re-
cent advances in NRSfM and enables editing of the cam-
era and non-rigid shape information associated with the la-
tent codes without needing to retrain the generator. This
formulation provides an implicit dense 3D reconstruction
as it enables the image synthesis of novel shapes from ar-
bitrary view angles and non-rigid structure. The method
is built upon a sparse backbone, where a neural regressor
is first trained to regress parameters describing the cam-
eras and sparse non-rigid structure directly from the latent
codes. The latent trajectories associated with changes in
the camera and structure parameters are then identified by
estimating the local inverse of the regressor in the neigh-
borhood of a given latent code. The experiments show that
our approach provides a versatile, systematic way to model,
analyze, and edit the geometry and non-rigid structures of
faces.

1. Introduction
In recent years, Generative Adversarial Networks

(GANs) [15] have seen rapid improvements in image qual-
ity as well as training stability. GANs have achieved re-
markable results in tasks such as image synthesis [23–27],
image-to-image translation [11, 12, 36], semantic editing
[1,2,21,33,39,43,47] as well as regression tasks [32]. Espe-
cially the StyleGAN [24–27] family of models show state-
of-the-art results in unconditional synthesis human faces
images. However, the standard StyleGAN architecture pro-
vides no way to directly control semantics like the pose and
expression of the generated images. This has led to a large
interest in finding semantic directions in the latent space of
StyleGAN which controls specific semantic attributes such
as pose, expression, hairstyle, illumination, etc.

The non-rigid structure-from-motion (NRSfM) problem

Original ———————– Edits ———————–

Figure 1. Semantic editing of real image. Our method parame-
terizes the latent space of StyleGAN in terms of camera and shape
parameters. This allows for editing of rotation, translation, and
non-rigid shape deformation of the synthesized images. Coupled
with a strong latent encoder, like e4e [45] or HyperStyle [5], our
method allows for semantic editing of real images. Here we show
two non-rigid changes corresponding to facial expressions (2nd
and 3rd column) as well as a rigid edit corresponding to camera
orientation (4th column).

is a difficult, under-constrained problem with a long his-
tory in computer vision. NRSfM aims at obtaining the
three-dimensional reconstruction of a scene with dynami-
cal deformable structures from a sequence of 2D correspon-
dences. Given a set of 2D correspondences, the standard
assumption is that the deformable 3D shape is a linear com-
bination of basis shapes; the camera information, describ-
ing how the 3D structure is projected onto the image plane,
also needs to be recovered. In this work, we incorporate a
sparse 3D model based on NRSfM into a generative model
like StyleGAN. This is interesting for two reasons: first, this
allows us to find trajectories in the latent space correspond-
ing to well-defined semantic attributes corresponding to the
camera geometry and non-rigid structure. Second, using a
generative model in conjunction with NRSfM provides a
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Figure 2. Rigid edits to rotation and translation. Our method
discovers trajectories in latent space corresponding to arbitrary ro-
tations and translation.

way to obtain an implicit dense 3D reconstruction by using
only the sparse 2D inputs. By this, we refer to the fact that
we are able to view the dense 2D face from an arbitrary 3D
orientation, as if we had an explicit dense 3D reconstruc-
tion available. In other words, our approach enables dense
image synthesis of novel shapes from arbitrary view angles
and non-rigid deformation without the need for an explicit
dense 3D reconstruction.

In Fig. 1, we demonstrate semantic editing of real images
by using our method in conjunction with a recent method
for GAN inversion [45]. In Fig. 2 we show latent trajecto-
ries corresponding to changes in the rigid camera parame-
ters such as rotation and translations. Note that such edits
are only possible if the generator has been trained on a data
set that contains such variations, i.e., of translation and roll
rotation. In other words, we need an unaligned data set, like
FFHQU [25].

Our method utilizes a sparse backbone that is a 3D model
based on the approach for NRSfM given in [8, 16]. The 3D
model is constructed using solely 2D landmarks extracted
from synthetic face images generated by StyleGAN, thus
our approach requires no 3D supervision.

In this approach, we first factorize the measurement ma-
trix, consisting of corresponding 2D landmark points, into
a rigid and non-rigid part each composed of camera and 3D
shape information respectively. Any arbitrary 3D shape can
then be represented as the sum of a rigid basis shape and a
linear combination of rank-one non-rigid basis shapes. Our
approach provides a way to recover a set of expansion co-
efficients that contains all the information about the 3D re-
construction of the extracted 2D face landmarks. Addition-
ally, for each set of 2D landmarks, we recover a projec-
tion matrix, describing the camera information for project-
ing the 3D shapes onto the image plane as well as informa-
tion about the orientation of the recovered 3D structure.

We then proceed to connect the information recovered
from the sparse 2D landmarks to the latent space of Style-
GAN by training a regressor in the form of a multilayer
perceptron (MLP) network to regress the shape and cam-
era information directly from the latent codes. By estimat-
ing the local inverse of the regressor at a given latent code,
we can identify trajectories in latent space corresponding to
changes in camera or non-rigid geometry, while preserving

other attributes of the generated image, like identity, texture,
and illumination. We show that the regressor network can
be used for semantic editing of latent codes, either by using
the first-order Taylor expansion of the trained network to
define linear directions in latent space or by using the pre-
diction of the network as a loss term for a gradient-based
optimization algorithm.

As noted in [46], performing semantic editing in Style-
GAN using only 2D landmarks is a very challenging prob-
lem since the 2D coordinates are extremely localized com-
pared to more global attributes like age or gender.

In summary, we propose an editing framework that relies
solely on sparse 2D landmarks. From the landmarks, we use
NRSfM to extract camera and shape parameters describing
the underlying 3D geometry. We train a regressor to predict
these parameters directly from the latent codes and show
how the regressor naturally enables editing of the camera
and non-rigid geometry of the generated images.

The main contributions of this paper are the following.

• We propose a framework that incorporates the NRSfM
problem into the latent space of generative models.

• Based on NRSfM we suggest a framework to get artis-
tic control over images synthesized by StyleGAN.

• We show how our approach can model the camera,
pose, and non-rigid structure of the synthesized im-
ages, without an explicit dense 3D reconstruction.

• We propose a general method for enabling 3D aware-
ness in 2D GANs without requiring any retraining or
changes to the generator architecture.

• We propose a regularization technique that preserves
the identity of the synthesized faces during the edits.

2. Related Work
StyleGAN. The StyleGAN [24–27] generator is inspired
by the style transfer literature [14,20] and consists of a map-
ping network f which maps a latent vector z ∈ Z , sampled
from the standard Gaussian N (0, I) in order to obtain an
intermediate representation w ∈ W . The latent space W
is more disentangled than Z [26]. To synthesize an image,
the latent code w is copied and fed to each synthesis block
of the synthesis network G which produces the final image.
Instead of feeding the same vector to each of the synthe-
sis blocks, if the vectors are allowed to differ, the resulting
space is typically denoted as W+. It has been shown that
using W+ space can lead to lower reconstruction loss when
performing GAN inversion [35, 50], however at the cost of
lower editability [45] of the resultant latent codes.

Semantic Editing. Several methods have been proposed
to enable semantic edits of the images produced by Style-
GAN. InterFaceGAN [38, 39] enables editing of binary se-
mantic attributes like left/right pose, gender, presence or ab-
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sence of smile, etc. Here, a set of latent codes are first sam-
pled and the images are annotated using pre-trained binary
classifiers. Following the annotation step, a support vector
machine was fitted on the labeled data for each binary se-
mantic attribute. The normal vector for the supporting hy-
perplane then defines the semantic direction in latent space.
Another approach for semantic editing is GANSpace [21]
which proposes to use PCA on sampled latent codes to find
semantic directions in an unsupervised fashion. Another
related approach also factorizes the weights of the trained
generator [40, 42] rather than the latent codes. Both meth-
ods then change the semantics of the generated images by
perturbing latent codes in the direction of the found se-
mantic directions. Additionally, [2] uses normalizing flows
for attribute-conditioned semantic editing and explores both
linear and non-linear trajectories in latent space. Another
related approach, StyleRIG [43] proposes semantic editing
in StyleGAN using 3D morphable models [7]. Recently
it was proposed to regard the space of channel-wise style
parameters after the learned affine transformation in each
block in the StyleGAN synthesis network as a separate la-
tent space, complementing the previously mentioned Z , W
and W+ spaces. This latent space was named StyleSpace
and denoted as S [47]. It has been shown that S space has
superior disentanglement properties, especially in Style-
GAN3 [4, 25], compared to W space thus enabling fine-
grained and highly localized edits, like the closing of the
eyes or changes to hair color [47].

Inversion. For purposes involving the editing of real im-
ages, it is necessary to find a good latent representation.
That is, we need to find a latent code that, when passed
to the generator, reconstructs the target image. This prob-
lem is known as GAN inversion. Techniques for GAN
inversion have either used optimization-based approaches,
where the latent code is directly optimized in order to re-
construct the target image [1, 27, 35] or encoder-based ap-
proaches, where a target image is directly mapped into the
latent space [3, 34, 36] or hybrid approaches [6, 50].

Recent work [45] suggests that there is a trade-off be-
tween distortion and editability when selecting which latent
space to project a given target image into. Projecting im-
ages into the extended W+ space typically leads to higher
reconstruction quality [35], i.e., produces a generated im-
age which is more similar to the target image. However,
latent codes in W+ are generally less suitable for semantic
editing than latent codes in the native W space.

The e4e encoder proposed in [45] seeks to find a good
trade-off between reconstruction and editability by project-
ing images into W+ but constraining the latent codes to be
close to W . Recently [37] shows that real images can be
embedded into W space by fine-tuning the trained gener-
ator around the target image, thus circumventing the need

for projecting into W+ space. In [3], a combination of
the iterative and encoder-based methods is proposed. Here
the encoder predicts the residual with respect to the cur-
rent estimate of the latent code and thus is able to refine
the latent code using only a few forward passes of the en-
coder in a process referred to as iterative refinement. Re-
cently, [5] proposed to unite the ideas of fine-tuning the gen-
erator from [37] with the iterative refinement from [3] by
introducing a hypernetwork which predicts how the param-
eters of the generator should be changed in order to faith-
fully embed a given real image into the native, and more
editable, W space.

Explicitly 3D aware GANs. Several works have investi-
gated incorporating explicit 3D understanding into GANs
[17, 31, 48]. Compared to these, our approach can be used
to control the 3D structure in existing 2D GANs without the
need for adaptation of the generator architecture nor does
our approach require any retraining.

NRSfM. Structure-from-motion (SfM) deals with the
problem of inferring the scene geometry and camera in-
formation from image sequences. In [44], an orthographic
camera model was assumed to infer rigid shape and mo-
tion by a factorization of the measurement matrix. In [10],
this problem was formulated to include non-rigid deforma-
tions by assuming that a shape is a linear combination of
3D basis shapes, hence proposing an approach for non-rigid
structure-from-motion (NRSfM). Various works have fol-
lowed up on this approach over the years this is still an area
of active research [22].

Recently, there have been attempts to solve the NRSfM
problem by employing neural networks. However, most re-
quire a large training data set [29], 3D supervision, or an as-
sumption of an orthographic camera model [29,41]. Specif-
ically, [29] formulates the NRSfM problem as a multi-layer
block sparse dictionary learning problem converted into a
deep neural network. In neural NRSfM [41], the authors
rely on dense 2D point tracks to recover dense 3D represen-
tations, and train an auto-decoder-based model with sub-
space constraints in the Fourier domain. Our method differs
from these works in several aspects, because (1) it relies
only on sparse 2D points, (2) it does not rely on a block
structure, and (3) it assumes an affine camera model. This
makes our approach direct, lightweight, fast, and efficient.

3. Method
Let I = G(w) be an image generated by the StyleGAN

generator by the latent code w. Our goal is to locally param-
eterize the manifold of latent codes, in the neighborhood of
a fixed latent code w0, by an attribute vector q so that

w = Ωw0
(q), (1)
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Figure 3. Overview of our method. We first create a sparse 3D model R of facial landmarks from a data set of 2D landmarks X using
NRSfM. The 3D model is parameterized by an attribute vector q which contains information about the camera, rotation, and non-rigid 3D
structure. We then train a regressor ϕ to predict the parameters q directly from latent codes w. Once the regressor is trained, it can be used
for semantic editing. Given a latent code w0 with corresponding attribute vector q0 we can define a different, target attribute vector q̃ and
transfer it onto w0 using the transformation Ωw0 which depends on the regressor ϕ.

where q describes the pose, shape, and camera informa-
tion of the generated image. This formulation facilitates the
transfer of the target attributes q onto the latent code w0

to obtain an edited code w where only the target attributes
have changed in the image, while preserving all other at-
tributes such as identity, texture, and illumination.

Our method is composed of three distinct elements. (1)
The sparse back-bone relies on a pre-trained landmark ex-
tractor ψL, which extracts the 2D landmarks X = ψL(I),
from a generated image I coupled with a closed-form pa-
rameterization for the 2D landmarks as X = R(q), where
R maps the 3D shape defined by the attribute vector q onto
the image plane. (2) The attribute regressor ϕ predicts the
attribute vector q = ϕ(w) from the latent code w, where
the regressor is trained by minimizing the squared distance
between the ground truth landmarks X = (ϕL ◦ G)(w)

and predicted landmarks X̂ = (R ◦ ϕ)(w). (3) The regres-
sion inversion constructs the local inverse of the regressor
ϕ around the latent code w0, i.e., finds the local parame-
terization of the latent space so that w = Ωw0

(q), where
ϕ(w0) = q0. In Fig. 3 we provide a graphical overview of
our approach.

The remaining part of this section is organized as fol-
lows. In Section 3.1 we introduce the landmark parameter-
ization R(q) and detail how the 3D basis shapes can be re-
covered from a data set of sparse 2D landmarks. The train-
ing of the attribute network ϕ is discussed in Section 3.2 and
finally, in Section 3.3 we show how the regressor ϕ is used
to facilitate highly interpretable semantic editing.

3.1. Rank-one model

The rank-one approach for non-rigid structure-from-
motion, proposed in [8, 9, 16], is an affine camera model
for non-rigid structure-from-motion which is able to recover
3D structure from sparse 2D correspondences using rank-

one basis shapes. In this paper, we frame the model as a pa-
rameterization of the space of possible 2D shapes in terms
of camera, rotation, translation, and shape parameters. We
propose to write the model of [8, 9] in closed-form as

R(q) = K[I2|0]R(θ)︸ ︷︷ ︸
M

[
B0 +

K∑
k=1

αkBk

]
+ t⊗ 1T

L, (2)

where K ∈ R2×2 an upper triangular matrix, containing
the camera parameters k = (k11, k12, k22). The rotation
matrix R ∈ R3×3 is parameterized in terms of the Eu-
ler angles θ = (θx, θy, θz). The rigid basis shape B0 de-
scribes the average 3D reconstruction while the non-rigid
basis shapes Bk for k > 0 describe the non-rigid varia-
tion from the rigid basis shape. The expansion coefficients
α = (α1, α2, · · · , αK) determine the strength of the contri-
bution of each of the non-rigid basis shapes Bk. Finally, the
translation vector t determines the offset from the origin. In
(2), ⊗ denotes the Kronecker product, 1L ∈ RL is a vector
of ones, thus t⊗1T

L ∈ R2×L yields a matrix where t ∈ R2 is
repeated L-times column-wise. To summarize, with (2) any
2D shape X can be parameterized in terms of an attribute
vector q as X = R(q) where the attribute vector contains
the camera, rotation, shape, and translation parameters as
q = (k,θ,α, t).

In the next section, we see how the rigid basis shape B0

and non-rigid basis shapes Bk, k > 0, can be recovered
given a data set of corresponding 2D landmark points.

3.1.1 Non-rigid Factorization.

Given N 2D shapes Xn ∈ R2×L, we stack them into a
measurement matrix X ∈ R2N×L. Our aim is to factorize
X into a rigid X0 and non-rigid δX part such that

X = X0 + δX = M0B0 + δMδB. (3)
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To recover the rigid basis shape B0 from (2) we first cal-
culate the singular value decomposition (SVD) of the mea-
surement matrix as X = UΛVT. The rigid part X0 is then
constructed by selecting the three dominant singular vectors
such that

X0 = U0Λ0V
T
0 = M0B0 with (4)

M0 = U0Λ0 ∈ R2N×3, B0 = VT
0 ∈ R3×L. (5)

The matrix M0 contains theN affine projection matrices
Mn, associated with each shape in the data set, which are
stacked on top of each other in M0.

To recover the non-rigid basis shapes Bk, we subtract the
rigid part from the measurement matrix, i.e., δX = X −X0,
and calculate the SVD of the remaining part as

δX = δUδΛδVT = δMδB. (6)

In the following, we use δB = δVT ∈ RL×L to construct
the non-rigid basis shapes as Bk = dkb

T
k , where bT

k is the
kth row of δB, and dk is a 3 × 1 unit vector which will be
determined by gradient-based optimization. Now our goal
is to recover D = [d1, · · · ,dK ] ∈ R3×K which defines the
non-rigid basis shapes. In [8, 9, 16], D was recovered by an
alternating least squares optimization scheme by exploiting
the orthonormality of the non-rigid basis shapes. Here we
use gradient-based optimization instead. For this purpose, it
is convenient to write the factorization of the measurement
matrix X as

X = M0B0 +MαB, (7)

where

Mα = (α⊗ 12×3)⊙ (1K ⊗M0)

=


α11M1 α12M1 · · · α1KM1

α21M2 α22M2 · · · α2KM2

...
...

. . .
...

αN1MN αN2MN · · · αNKMN

, (8)

where ⊙ is the Hadamard product and

B = diag(vec(D))(IK ⊗ 13)δB =


d1b

T
1

d2b
T
2

...
dKbT

K

 =


B1

B2

...
BK

 .
(9)

Then we can jointly find D and α by minimizing

min
D,α

||X̂ (D,α)−X||2F + λ

K∑
k=1

(dT
k dk − 1)2, λ ∈ R+,

(10)

by gradient descent. Once we have found the D and α
which minimizes (10), the non-rigid basis shapes can be
constructed using (9). The found basis shapes Bi com-
pletely specify the parameterization in (2).

The parameterization of a new unseen set of landmarks
Xnew can be obtained as

q∗ = argmin
q

||R(q)−Xnew||2F . (11)

3.2. Connection to the latent space

Having found the parameterization R in (2), we train a
MLP network ϕ to regress the parameters q directly from
the latent codes w such that ϕ(w) = q̂. Predicting q is
equivalent to predicting the landmarks of the generated im-
ages as R(ϕ(w)) = X̂. We train the network ϕ to minimize
the objective function

L (w) = ∥R(ϕ(w))− ψL(G(w))∥2F , (12)

where ψL is some pre-trained landmark extractor.

3.3. Semantic Editing

In the following, we provide an analytic as well as a
gradient-based approach for locally inverting the trained
network ϕ, to control the pose and non-rigid shape of im-
ages generated by StyleGAN. For the analytic approach,
the first order Taylor expansion of ϕ around w0 yields

ϕ(w) = ϕ(w0) + J|w=w0
(w −w0), (13)

where J|w=w0
is the Jacobian of ϕ evaluated at w0. Now

since ϕ(w0) = q0 we can rewrite this as

w = w0 + J†(q− q0), (14)

where J† is the Moore-Penrose pseudo-inverse of J|w=w0
.

This allows us to edit a latent code w0 with associated 2D
landmarks X0 parameterized by q0 as X0 = R(q0) in such
a way as to obtain a new latent code w with a corresponding
set of landmarks parameterized by q.

The analytic method described in (14) requires evaluat-
ing J at w0 and defines a linear path in latent space. As an
alternative to (14) we propose a gradient-based approach
where we directly minimize the difference between the net-
work prediction ϕ(w) and a target attribute vector qtarget via

min
w

∥ϕ(w)− qtarget∥2 + λD(G(w), G(w0)), (15)

where D(·, ·) is an image similarity metric such as Learned
Perceptual Image Patch Similarity (LPIPS) [49] or Arcface
[13], which we employ for regularization purposes. The
gradient-based editing is analogous to what is proposed in
[46]. However, here we allow for the passing of gradients
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Original Rigid edit Non-rigid edit Both

Figure 4. Rigid and non-rigid edits. Our approach disentangles
rigid edits (rotation) from non-rigid edits (facial expression). We
observe that the predicted landmarks agree well with the target
landmarks for both types of edits.

through the generator G in order to calculate the identity
loss in (15).

In Fig. 4 we visualize the landmarks predicted by our re-
gressor from the latent code as R(ϕ(w)) in blue. Addition-
ally, we showcase semantic editing by changing the latent
code w towards a set of target landmarks R(qtarget) in or-
ange. We show a rigid edit of camera rotation, by changing
θ and a non-rigid edit to facial expression by changing α,
as well a combination.

4. Experiments

4.1. Implementation Details

We used the StyleGAN2 [27] networks pre-trained on
FFHQ [26] as well as StyleGAN3 [25] pre-trained on
FFHQU [25]. FFHQ consists of 70K face images from
flicker and FFHQU is the unaligned version. To construct
the model R in (2) we first sampled N = 5 × 104 syn-
thetic images and from each extracted L = 68 landmark
points with Dlib [28] and L = 468 using MediaPipe [30],
which were then normalized to the interval [0, 1]. In each of
the following experiments, we have set the number of non-
rigid basis shapes to K = 12. Further, we rotated the basis
shapes to face the camera when θ = 0 in (2) in order to
stabilize the training of the regressor. We trained the regres-
sor, to predict the mean-centered output features q̂ for each
of the N samples. We used the Adam optimizer, 3 hidden
layers, each of size 512, and ReLU activation. To evaluate
image similarity we use LPIPS and as a metric for identity
similarity, we use Arcface [13].

4.2. Model Evaluation

To evaluate our approach we sampled 1000 latent codes
w from the generatorG and measured the landmark loss

LL(w) = ||(R ◦ ϕ)(w)− (ψL ◦G)(w)||2. (16)

Table 1. Model evaluation. Comparison of editing results in the
latent spaces: Z , W , and W+ of StyleGAN2 and 3. Performance
is measured using different metrics, lower is better.

Model /
latent space LL(w) LL(wedit) Lϕ LR LID

sg2 / Z 0.037 0.094 0.029 0.123 0.190
sg2 / W 0.006 0.026 0.024 0.057 0.331
sg2 / W+ 0.008 0.036 0.058 0.181 0.019
sg3 / Z 0.021 0.036 0.032 0.063 0.264
sg3 / W 0.007 0.019 0.028 0.045 0.296
sg3 / W+ 0.009 0.021 0.071 0.160 0.034

We then perform a series of edits wedit = Ωw(qedit) us-
ing the gradient-based method in (15) with Arcface for iden-
tity regularization with λID = 0.01 For each edit, we mea-
sure the landmark loss LL(wedit) as well as three additional
losses. First, we measure how well the edits results in the
correct change in the prediction of the attribute vector with
a metric Lϕ which we define as

Lϕ = ||ϕ(wedit)− qedit)||2. (17)

Secondly, we measure how well the new ”ground truth”
landmarks of the edited latent code agree with the target
landmarks

LR = ||R(qedit)− (ψL ◦G)(wedit)||2. (18)

Finally, we measure the identity loss LID, between the orig-
inal and edited images.

For this experiment, we used Dlib as the ”ground truth”
landmark extractor ψL and evaluated the full 10242 res-
olution StyleGAN2 and 3 generators, both trained on the
aligned FFHQ data set. We show the results in Table 1. The
model was better at predicting landmarks in W and W+
compared to Z space when measuring losses LL(w) and
LL(wedit).

We also observe that the identity loss LID is very low for
W+ space, however, LR is also dramatically higher, indi-
cating that it is much harder to change the generated image
in such a way that the extracted GT landmarks agree with
the specified target when performing edits in W+ space.
The same point is supported by the Lϕ metric with is also
substantially higher for W+ space.

4.3. Identity Regularization

We performed a qualitative comparison between the lin-
ear (14) and gradient-based method (15), proposed in Sec-
tion 3.3. Here we edited pose and smile using both methods
and show the effect of adding identity regularization, i.e.,
ArcFace, to the gradient-based method in Fig. 5. In the sec-
ond column, it can be seen that the linear method is able
to define directions in latent space which mostly change
the target attribute, i.e., pose or smile, however, we note
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Original Linear Non-linear Non-linear
w. ID loss

Figure 5. The effect of identity regularization. We observe that
adding ArcFace to the loss function improves the identity preser-
vation of two edits: rotation (top) and smile (bottom).

that the identity is not preserved well in the edit. This can
be alleviated by the gradient-based method which defines a
non-linear trajectory in latent space. Further, the gradient-
based method in (15) allows for explicit identity regulariza-
tion using ArcFace which substantially improves the degree
of identity preservation for both pose and smile edits as can
be seen in column 4 of Fig. 5.

4.4. Attribute Transfer

Our approach enables the transfer of attributes, such as
pose or facial expression, from one image to another in a
straightforward manner, while preserving other attributes
such as identity and illumination. Given two latent codes,
w1 and w2 with corresponding attribute vectors q1 and q2

we can transfer the pose and face shape from w1 to w2 by
performing the edit w̃2 = Ωw2

(q1). Here both q1 and q2

can be recovered using either the regressor ϕ or using the
minimization procedure in (11). We demonstrate the results
of our method in Fig. 6, where we changed the rotation and
facial expression of three source images to match different
target images, i.e., transferring attributes from the target to
the source, while preserving the identity in the source im-
ages.

4.5. Rotation and Translation with StyleGAN3

Our method is able to define trajectories in latent space
corresponding to roll rotation as well as translations. As
noted in [4] roll rotations and translations are a native part
of the architecture of the StyleGAN3 generator and can be
achieved by manipulating the Fourier features using the four
parameters (sinα, cosα, x, y) which are obtained from the
first learned affine layer of the synthesis network. In com-
parison, our method can edit rotation and translation di-
rectly in the native W space of StyleGAN3. In Fig. 7, we
qualitatively compare the effect of performing roll rotation
and translation using our method to the effect of manipulat-
ing the Fourier features directly. We note translations look
very similar with both methods. However, for roll rotations,

Source

Ta
rg

et

Figure 6. Attribute transfer. Our method can edit the rotation and
expression of the source image (left column) to match the target
image (top row) while preserving identity of the source.

Original Roll (SG3) Roll (Ours) Trans. (SG3) Trans. (Ours)

Figure 7. Comparing our method to Fourier feature editing.
Our method finds a direction for roll rotation where the axis of
rotation is at the center of the object. In comparison, manipulating
the Fourier features results in an upward movement of the entire
face since the axis of rotation is in the middle left border of the
image. The vertical dotted line highlights the level of the nose for
easier comparison.

we note that the axis of rotation is located in the middle of
the left-hand image border when manipulating the Fourier
features (see the location of the nose in Fig. 7), whereas,
with our method, the axis of rotation is located at the center
of the face.

4.6. Comparison with other Methods

We compared the editing directions corresponding to
pose (yaw rotation) and smile with three off-the-shelf
techniques for semantic editing: InterFaceGAN [38, 39],
GANSpace [21], and TensorGAN [18, 19]. Although our
method supports arbitrary 3D rotations in latent space, we
focused on editing yaw rotations and smile since previous
techniques have also been reported to enable these edits, en-
abling a direct comparison. A qualitative comparison of the
edits to smile and yaw rotations generated by each of the
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(b) Yaw rotation edits applied to the original image shown in blue.

Figure 8. Qualitative comparison to other methods. We com-
pare editing smile and yaw rotation using our method with equiv-
alent edits using other off-the-shelf techniques.

four methods is shown in Fig. 8a and Fig. 8b respectively.
When evaluating the degree of identity preservation dur-

ing the semantic edits it can be seen that our method is on
par with the competing methods when performing yaw ro-
tations and arguably better when editing smile.

4.7. Editing real images

Coupled with an encoder, our approach facilitates editing
of real images. We qualitatively compared the projection
and editing results when using our method in conjunction
with e4e [45] and HyperStyle [5], respectively. The results
are shown in Fig. 9. The two methods operate in different
spaces, e4e project images into W+ space while Hyper-
Style instead makes an initial prediction in W space and
then fine-tunes the generator such that the prediction more
faithfully reconstructs the target. Despite the fine-tuning of
the generator it is not necessary to retrain the regressor when
using HyperStyle for GAN Inversion.

Real Image Reconstruction Pose Edit Smile edit

e4
e

H
yp

er
St

yl
e

Figure 9. Editing real images. Qualitative comparison of pro-
jection and editing results when combining our method with two
state-of-the-art encoders, e4e [45] and HyperStyle [5] respectively.

5. Conclusions
We presented a framework for highly interpretable image

editing in pre-trained 2D GANs. Our framework provides
an efficient method to find trajectories in the latent space
of GANs which change the generated images according to
camera, orientation, and shape parameters. This enables the
discovery of trajectories in the latent space corresponding
to arbitrary transformations of shape and orientation of the
generated images.

In summary, we first used NRSfM to derive a sparse 3D
model on the domain of the generator. We then trained a re-
gressor to relate the 3D model to the latent space. We then
proposed two methods for using the regressor for seman-
tic editing: a linear method, and a gradient-based method.
The latter is similar to the iterative editing algorithm in [46],
however, we integrate explicit identity regularization which
improves identity preservation.

Our method provides an efficient framework for manip-
ulating the 3D structure of objects generated by 2D GANs.
Compared to other methods, our approach is fast compared
to existing frameworks for training explicitly 3D aware
GANs [17, 31, 48] and compared to [43] our method is
lightweight and able to perform rotations and edits to face
shape without the need for a 3D morphable model. Since
our method only requires access to a landmark extractor
trained on the same domain as the generator, our approach
does not require any additional training data and can be
trained in a fully self-supervised fashion. Further, our ap-
proach does not require retraining of the generator or any
changes to the generator architecture.

As to limitations, our method allows for adjustments to
the position, orientation as well as non-rigid deformation of
the face shape of the generated images. Since our method
only captures the 3D orientation and face shape our method
is not able to add or remove face accessories, eye-glasses,
earrings, and hats nor change the skin tone or hair color.
Overcoming those limitations is an avenue for future work.
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[18] René Haas, Stella Graßhof, and Sami Sebastian Brandt.
Tensor-based subspace factorization for stylegan. In 2021
16th IEEE International Conference on Automatic Face and
Gesture Recognition (FG 2021), pages 1–8, Los Alamitos,
CA, USA, dec 2021. IEEE Computer Society. 7
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