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ABSTRACT
Reconstructing 3D trajectories from video is often cumbersome and
expensive, relying on complex or multi-camera setups. This paper
proposes SynthNet, an end-to-end pipeline for monocular recon-
struction of 3D tennis ball trajectories. The pipeline consists of two
parts: Hit and bounce detection and 3D trajectory reconstruction.
The hit and bounce detection is performed by a GRU-based model,
which segments the videos into individual shots. Next, a fully con-
nected neural network reconstructs the 3D trajectory through a
novel physics-based training approach relying on purely synthetic
training data. Instability in the training loop caused by relying on
Euler-time integration and camera projections is circumvented by
our synthetic approach, which directly calculates loss from esti-
mated initial conditions, improving stability and performance.
In experiments, SynthNet is compared to an existing reconstruction
baseline on a number of conventional and customized metrics de-
fined to validate our synthetic approach. SynthNet outperforms the
baseline based on our own proposed metrics and in a qualitative
inspection of the reconstructed 3D trajectories.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing; Tracking; Reconstruction; Neural networks; • Applied
computing → Physics.
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1 INTRODUCTION
In high-level tennis, accurate 3D information on the ball holds great
value, both in assisting umpires in calling the game and gathering
player and shot information for analytical purposes. Currently, the
most popular technology is the Hawk-Eye system1, which uses
multiple cameras and triangulation to capture the ball’s 3D position
with an error margin of 3.6 millimeters. Such a system is expen-
sive and thus only available for the highest level of tennis players.
However, most tennis players are amateurs and often lack access
to such a system. Enabling the tracking of the ball’s 3D position
using a single, everyday camera, such as a phone, would allow the
average tennis player to access game statistics previously reserved
for professionals.

Estimating 3D ball positions from monocular video has been
achieved in other sports like volleyball [2], basketball [1], and bad-
minton [12], but, to our knowledge, has never been achieved in
tennis. Thus, the motivation for this paper is to estimate 3D trajec-
tories from monocular video in tennis.
Direct 2D-to-3D lifting of ball coordinates presents a significant
challenge since (2𝐷, 3𝐷)—pairs of ball coordinates are publicly un-
available. Instead, we segment the game into individual shots and
1https://www.hawkeyeinnovations.com
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Figure 2: Complete End-to-End Pipeline. For training, synthetic data is generated by sampling initial conditions (IC). This
data is used to create 3D trajectories and image trajectories along with sampled camera parameters. The feed-forward neural
network (FNN) predicts initial conditions based on image trajectories and court corners, and trains using Root Mean Squared
Error (RMSE) between true and predicted IC as the loss function. For inference, features are extracted from video data and fed
into the hit and bounce detection model HBNet. Predictions from HBNet segment the videos into individual shots, which are
then used alongside court corners as input to the trained FNN. The FNN predicts a new set of initial conditions, enabling the
creation of 3D trajectories that are reprojected onto image coordinates to calculate reprojection error.

use the physical laws of motion to set up differential equations for
the trajectories, after which Euler’s method is used to estimate the
3D position of the ball, which can be projected to the 2D image
coordinates using the camera parameters. Usually, a training loop
involving iterative time integration and subsequent 3D-2D cam-
era projection is too unstable to converge. Instead, we propose a
feed-forward neural network that predicts the initial conditions
(IC) given the image (2D) trajectories as input, which provides a
significantly smoother training routine. This is realized by, prior
to training the model, random sampling of initial conditions and
subsequent trajectory simulation using Euler’s method. Then, only
keeping trajectories, passing the net, and landing within the court
allows for acquisitions of 3D shot trajectories. Lastly, the image
coordinates are retrieved by projection to the image plane using
randomly chosen camera parameters found from known positions
of the tennis court. A model could also be trained on the synthetic
(2D,3D) pairs. However, compressing input image trajectories al-
lows for better generalization of real-world trajectories.
To segment the game into shots, we identify the start and end of
each shot by detecting hits and bounces. We use the TrackNet Ten-
nis dataset [7], consisting of videos from 10 professional tennis
matches with annotated hits and bounces. From the videos, we

extract three features: player poses, ball coordinates, and court cor-
ner coordinates, to use as input for our hit and bounce detection
model, which we call HBNet. We evaluate HBNet on the ground
truth labels from the TrackNet dataset and use the predictions to
segment the videos into individual shots.

In the trajectory experiments, we evaluate the model on the
reprojection error between the true and predicted (estimated with
[19]) image trajectories. Additionally, realizing the limitation of
using reprojection error as the sole metric, we propose tailored
metrics to validate the real-world generalization of our synthetically
trained model. The complete SynthNet pipeline can be seen in
Figure 2.

2 RELATEDWORKS
A lot of prior works in the field of computer vision and machine
learning in sports have focused on individual components such as
court detection [3, 21, 22], ball tracking [7, 11, 20] and pose estima-
tion [8–10]. Previous research used those features to perform action
recognition in sports. Huang et al. [5, 6] use the ball trajectories
with audio information to detect hits made in a tennis game. Simi-
larly, Shublewska-Paszkowska et al. [18] use 3D tennis movement
as input to a graph neural network to predict two actions: forehand
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and backhand strokes, while Cai and Tang [24] identifies 12 types
of tennis shots using a Long-Short Term Memory model.

When doing 3D tracking of sports balls, the most used and most
reliable way is to use a multi-camera setup [4, 15, 23, 25], where the
scene is captured from multiple angles and triangulation is used to
estimate the balls 3D location. While this can give accurate results,
it is less cost-efficient than using a single camera as you need access
to multiple cameras and the possibility and permission to set them
up. Some research in 3D ball tracking from monocular video has
been done in several sports such as volleyball [2], table tennis [17],
basketball [1] and badminton [12], all using a similar approach.
They extract features from video and use optimization techniques
to find the best set of initial conditions for a reconstructed 3D trajec-
tory. This method has several flaws. First of all, using optimization
techniques means that each shot is optimized one at a time, re-
sulting in long inference times. Secondly, the reprojection error
between the reconstructed 3D trajectory and the image trajectory
is used as part of the loss function, which is undesirable as this
can lead to unrealistic trajectories. Instead, we propose to use a
neural network to predict the initial condition, train this network
on synthetic data, and use their ground truth initial condition for
loss during training.

3 RECONSTRUCTING 3D TRAJECTORIES
3.1 Problem statement
In this paper, we develop an end-to-end pipeline to reconstruct
3D tennis ball trajectories from monocular video. The process in-
volves extracting the ball, court, and player poses to predict hits and
bounces during a match. These predictions segment the video into
shots, defined from a hit to a subsequent bounce. We deploy a neu-
ral network trained exclusively on synthetic data to estimate initial
conditions for ballistic 3D trajectories using 2D image trajectories
from these segmented shots. Subsequently, we evaluate the model
using reprojection error and additional proposed metrics. Training
will be done solely using a synthetic dataset where ground truth
initial conditions are known, and evaluation will be conducted on
segmented shots using the defined metrics. To generate trajecto-
ries from initial conditions, we employ Euler’s method for solving
differential equations.

3.2 Hit Bounce Detection
To detect the hits and bounces in a match, we use a similar archi-
tecture to Liu et. Al [12]. We extract court coordinates with an
algorithm proposed by Kosolapov Sergey [16], detect poses with
RTMO [13], and track the ball with WASB [19]. The poses are fil-
tered by searching for a pose inside each player’s court. If there
is no pose in the court, it finds the pose closest to the back line.
Court, player poses, and the ball is then used as features for a model
that predicts hits, bounces, and nonhits. To get the temporal as-
pect of the movement before and after a shot, we create a Gated
Recurrent Unit (GRU) based architecture, called Hit-Bounce Net
(HBNet). HBNet consists of an embedding layer with 32 neurons, 6
gated recurrent layers with 32 units, and 0.2 dropout. Followed by
a fully connected layer and a softmax which generates confidence
scores. The model takes a snippet of 21 frames at a time and predicts

Figure 3: Visual presentation of creating 3D trajectory given
a set of initial conditions. The loop runs in N iterations, and
with each time step a position and velocity is created.

whether a hit or bounce occurs in the last 9 frames of a snippet.
HBNet achieves an accuracy of 86% and a macro F1-score of 0.84.
The shots segmented with the predictions from HBNet are called
HBNet + WASB.

3.3 Synthetic Learning Procedure
Using the segmented shots from HBNet we can reconstruct 3D
trajectories for each shot. We define a shot to be a hit followed by
a bounce or another hit. Estimating each shot individually means
we can model the trajectory as a projectile under drag:

𝑑2x(𝑡)
𝑑𝑡2

= g − 𝐷

𝑚
|v(𝑡) |v(𝑡), (1)

where m is the mass of the ball, x and v are the 3D position and
velocity vectors, g is the gravitational constant, and 𝐷 the drag
coefficient. As this equation has no analytical solution, we use
forward Euler’s time integration to retrieve a discretized version of
the shuttle position with𝑁 time steps. At each step, the acceleration
is assumed constant for a small enough time step Δ𝑡 = 𝑡𝑛+1 −
𝑡𝑛 , where 𝑛 ∈ 𝑁 is the current step. Thus, for each small Δ𝑡 , we
calculate acceleration an+1, velocity vn+1, and position xn+1, based
on the acceleration, velocity, and position of the current time 𝑛 step
as follows:

a𝑛+1 = g − 𝐷

𝑚
|v𝑛 |v𝑛 (2)

v𝑛+1 = v𝑛 + a𝑛Δ𝑡 (3)

x𝑛+1 = x𝑛 + v𝑛Δ𝑡 . (4)
To create a 3D trajectory initial conditions v0 = (v𝑥0, v𝑦0, v𝑥0)𝑇
and x0 = (𝑥0, 𝑦0, 𝑧0)𝑇 is required. A visualisation of this process
can be seen in Figure 3. We center the world coordinates in the
middle of the tennis court. The y-axis is oriented along the length
of the court, away from the camera. The x-axis is oriented across
the width of the court, and the z-axis is oriented vertically, perpen-
dicular to the ground.

To predict a set of initial conditions we use a feedforward neural
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Figure 4: Model Architecture. The module has an input size
of 108, 4 NN blocks, and an output size of 6.

network (FNN) consisting of four hidden layers. The model architec-
ture can be seen in Figure 4. The goal of the model is to predict a set
of the six initial conditions that create the best-fitting 3D trajectory.
We only train the model on synthetic data, where the ground truth
initial conditions are known, and we calculate the loss as:

𝐿 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝐼𝐶𝑖 − ˜𝐼𝐶𝑖 )2, (5)

where 𝐼𝐶 is the ground truth initial conditions and ˜𝐼𝐶 the predicted
initial conditions.

For inference, the FNN uses the extracted 2D ball coordinates and
court corners (extracted from the videos) to make predictions of
initial conditions. We estimate a 3D trajectory based on the initial
conditions and reproject it to image coordinates using a perspec-
tive transformation. We find the camera parameters for each video
with camera calibrations assuming known world coordinates and
corresponding image coordinates. The corresponding coordinates
are comprised of the court corners and manually annotated net-
pole coordinates. Based on this, we calculate the reprojection error
(RE) between the real image trajectory (𝐼𝑇 ) and predicted image
trajectory ( ˜𝐼𝑇 ) using root mean squared error (RMSE):

𝑅𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝐼𝑇𝑖 − ˜𝐼𝑇𝑖 )2, (6)

3.4 Proposed Evaluation Metrics
We introduce three alternative evaluation metrics based on the
3D landing position of the ball: Landing Error (LE), Tile Accuracy
(T.acc) and Tile F1-score (T.F1). To find the 3D landing position of
the image trajectories, we use a homography to find the position of
the ball when a bounce occurs. The Landing error is the distance

Figure 5: Explanation of Landing error and tile accuracy/F1-
score. The predicted landing position, given label 2 is depicted
as red dot. The blue dot is the true landing position, given
label 4, found using homography on the image trajectory.
The landing error is the distance between the two landing
positions and tile accuracy/F1-score is calculated based on
their given label.

between the real and predicted landing position

𝐿𝐸 =

√︃
(𝑥𝑙 − 𝑥𝑙 )2 + (𝑦𝑙 − 𝑦𝑙 )2, (7)

where (𝑥𝑙 , 𝑦𝑙 ) is the true landing position and 𝑥𝑙 , 𝑦𝑙 the predicted
position.
To define the tile accuracy and tile F1-score we divide the court into
12 tiles, six on each side of the net, and assign the position a label
corresponding to the tile they land in as seen in Figure 5. Using
these labels we can calculate accuracy and F1-score.

Lastly, on synthetically created data where we have the true 𝐼𝐶
and therefore the true 3D trajectory, we can use the reconstruction
error (RecE) as an evaluation metric. The reconstruction error is
the mean Euclidean distance between the predicted and the true
3D trajectory

𝑅𝑒𝑐𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

√︃
(𝑥𝑖 − 𝑥𝑖 )2 + (𝑦𝑖 − 𝑦𝑖 )2 + (𝑧𝑖 − 𝑧𝑖 )2 . (8)

4 EXPERIMENTS
4.1 Dataset and Implementation Details
We use the TrackNet tennis dataset [7], which contains 96 rallies
spread across 10 different games of both men and women. All videos
are statically filmed from an overhead broadcast view behind one
of the backlines, with a resolution and frame rate of 1280x720 and
30 fps. The videos have annotated hits, bounces, and ball image
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coordinates for each frame, along with a visibility score for the
ball. Additionally, we annotated some hits and bounces that were
missing in the original annotations.
We create additional synthetic data to support the real data, by
sampling random combinations of initial conditions, and use these
conditions to create 3D trajectories. The sampling is done within
boundaries such that the trajectory starts within the sidelines and
not too far behind the backlines, and such that the velocity is below
the highest recorded velocities in tennis.

To use the trajectories as input for our model, we reproject them
down onto image coordinates using camera parameters sampled
from the real data. The court corners corresponding to the camera
parameters are used as input. We create 10000 shots, 5000 from
each side of the court, all of varying lengths and ending when
they hit the ground. The synthetic data allows us to measure both
reconstruction and reprojection errors. The real and synthetic data
are both divided into train and test, with two games reserved for
testing and eight for training. With the synthetic data, we divide
based on which game the sampled camera parameters are taken
from. The image trajectories are padded, using −1, to have a length
of 50 frames to create inputs of equal length, and trajectory and
court coordinates are scaled down by the image dimensions. The
model is implemented in Pytorch using a dropout of 0.2 and solely
trained on the synthetic data for 25 epochs with early stopping.

4.2 Model Evaluation
To evaluate our model, we define three different sets of trajectories:

(1) the ground truth annotations and image ball trajectories
from the TrackNet dataset,

(2) the predictions and image ball trajectories from our pipeline,
where we utilize WASB to find the ball and our HBNet model
to detect the shots (HBNet+WASB), and

(3) the synthetically created trajectories.
Table 1 shows the results of SynthNet on the ground truth, HB-

Net+WASB, and synthetic test data. The ground truth and HB-
Net+WASB are only trajectories from the test set, games 1 and 8,
and the synthetic trajectories only have trajectories with camera
parameters from these two games as well. The results show that
SynthNet consistently performs best over all metrics on the syn-
thetic trajectories. This is expected, as these trajectories can be
perfectly estimated using our 3D projection method. Using the syn-
thetic data yields a reprojection error of 16.1 pixels, which is more
than twice as for the HBNet + WASB and ground truth trajectories.
Likewise, we see that the model has half the reconstruction error
on the synthetic data compared to both HBNet+WASB and ground
truth trajectories.
SynthNet performs equally well on the ground truth trajectories
and the HBNet+WASB trajectories in terms of reprojection error,
with 41 pixels versus 41.31 pixels, while the landing error differs
significantly by a meter. Interestingly, the model has a much higher
accuracy, 8%, and F1-score, 0.9, on HBNet+WASB trajectories than
on the ground truth trajectories. Additionally, we see a relatively
large difference between the mean and median of RE and LE on
ground truth and HBNet+WASB trajectories indicating that there
are outliers with high RE and LE. The differences between mean
and median values on the synthetic data are smaller, showing fewer

outliers. Lastly, we can evaluate our model using recreation error
on the synthetic data, where we get a mean error of 1.39 meters.

4.3 Effect of Knowing Camera Parameters
To examine the effect of the model having encountered the camera
parameters doing training, we test the model on HBNet+WASB tra-
jectories from all the games, i.e. both the test and train sets. Table 2
shows the results. The model is trained using camera parameters
from all other games than game 1 and 8, but we don’t see that it
achieves the worst results on these. On game 1 it is among the best
results in all the metrics, while on game 8 it is among the worst
results.

Game 4 yields the worst performance based on our proposed
metrics. It is noteworthy that game 4 was recorded from a much
lower angle than the rest of the games. Based on those observa-
tions we conclude that it does not matter as much if the model has
encountered the exact camera parameters or angle before if they
are not significantly different from previously encountered ones.

4.4 Evaluating 3D Trajectories
Visually inspection of our 3D trajectories (HBNet+WASB) reveals
a couple of general tendencies. Firstly, the model seems to have
difficulties determining the proper 3D start position of the shot,
when the trajectory starts from the side of the court furthest away
from the camera. Table 3 shows the absolute error, in meters of the
initial position and meters pr. second of the initial velocity, on the
synthetic trajectories.

The model is good at determining the correct 𝑥-coordinate but
has difficulties with especially the𝑦-coordinate of the start position,
where it is, on average, 1.6 meters away from the true 𝑦-coordinate.
We observe the same tendencies on the initial velocity, where it
mostly struggles with velocity in the 𝑦-direction (along the field).
The model is generally better at estimating the initial position than
the initial velocity.

Figure 6 shows the image coordinates of the ball found using
WASB (red) and the predicted 3D trajectory and its reprojection
(green). It shows a reprojection that is somewhat close to the real im-
age trajectory, starting around the same pixels, and landing slightly
away from the true position. However, the real 3D shot starts from
around the backline, while the predicted shot starts closer to the
net. This problem arises, as the perspective makes it more difficult
to distinguish and determine distances when it is further away from
the camera. Furthermore, when finding the camera parameters, the
only reference points that are not on the ground plane are the poles
in the middle of the court. This lack of elevated 3D reference points
from the rest of the court could make it more difficult to project
elevated 3D points onto the image accurately.
Secondly, SynthNet has difficulties with outlier shots such as high-
velocity shots, shots from weird angles, shots that have a lot of
spin, shots that last only a couple of frames, etc. Figure 7 shows a
serve from game 5, with a high velocity, that flies at a strange angle.
If we only see the trajectory, it could look like it is flying across
instead of along the court, starting close to the net and ending near
it as well. As it is a serve, the ball starts high up into the air, which
again can be difficult to determine from image coordinates due to
the perspective. As a result, the predicted trajectory starts too close
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Table 1: Model performance on the three different test sets of trajectories. 𝑅𝐸 denotes the mean RE, 𝑅𝐸 the median RE, 𝐿𝐸 the
mean LE, and 𝐿𝐸 the median LE.

Image World

Image Trajectories 𝑅𝐸 𝑅𝐸 T.acc T.F1 𝐿𝐸 𝐿𝐸 RecE

Ground Truth 41.01 px 29.12 px 46.08% 0.307 2.73 m 2.17 m -
HBNet + WASB 41.31 px 31.82 px 53.85% 0.398 3.78 m 2.4 m -
Synthetic 16.1 px 14.65 px 75.1% 0.751 1.35 m 1.11 m 1.39 m

Table 2: Results of SynthNet on HBNet+Trajectories trajecto-
ries for each game.

Image World
RE T.acc T.F1 LE

game1 35.29 px 64.15% 0.488 3.19 m
game2 35.27 px 56.45% 0.402 2.25 m
game3 54.78 px 54.54% 0.294 3.59 m
game4 36.72 px 28.07% 0.187 7.07 m
game5 38.26 px 45.45% 0.202 3.30 m
game6 43.43 px 66.67% 0.388 3.40 m
game7 47.76 px 54.00% 0.3540 2.91 m
game8 47.56 px 43.14% 0.320 4.40 m
game9 34.17 px 59.52% 0.396 2.61 m
game10 39.56 px 61.54% 0.5523 3.02 m

average 41.28 px 53.35% 0.358 3.58 m

Table 3: Average absolute differences and standard deviations
on initial conditions on synthetic test data.

IC Direction Absolute Error

Position (𝑥0)
𝑥 0.25 ± 0.23 m
𝑦 1.63 ± 1.25 m
𝑧 0.40 ± 0.29 m

Velocity (𝑣0)
𝑥 0.64 ± 0.53 m/s
𝑦 3.11 ± 2.67 m/s
𝑧 0.58 ± 0.41 m/s

Figure 6: WASB image trajectory and reprojected predicted
3D shot. Left: WASB image trajectory (Red) and reprojected
predicted 3D shot(green). Middle: Predicted 3D shot seen
from the side. Right: Predicted 3D shot seen from above.

to the net, does not have the correct trajectory, and does not land

Figure 7: WASB image trajectory and reprojected predicted
3D shot. Left: WASB image trajectory (Red) and reprojected
predicted 3D shot(Green). Middle: Predicted 3D shot seen
from the side. Right: Predicted 3D shot seen from above.

close to the actual position. In such cases, the model appears to find
the least worst trajectory, which is a short trajectory in the middle
of the court. This is a general tendency with outlier shots.
Thirdly, SynthNet also tends to create initial conditions such that
the trajectories end before they hit the ground. This is of course a
problem, as we calculate our proposed metrics under the assump-
tion that the trajectory ends on the ground.
Furthermore, we observe a tendency to create trajectories that are
directed more toward the vertical middle line of the court than the
actual shot is. This observation is supported by the F1-scores of
each of the 12 defined tiles. Figure 8 show SynthNet achieves the
best results on the tiles along the vertical middle line. Additionally,
we see that there is a slightly better score at the side of the court
furthest away from the camera, which might be due to the camera
angle, where the ball’s position on the court closer to the camera is
more difficult to estimate. Interestingly, on tile 7, the model achieves
an F1-score of 0.

4.5 Ablation Study
We conducted an ablation study to explore the effect of using the
court corners as input along with the image trajectory. The results
presented in Table 4 show a clear performance increase in all met-
rics when using the court corners. We observe that knowing the
court size (in image coordinates) yields more accurate trajectories.
The court corners are static in the world coordinates. Thus, the
changing image position of the corners provides the model with
information about camera position and perspective. Additionally,
we hypothesize this is because, with the court corners, the model
knows the court’s limits and, therefore, finds it easier to make shots
within these boundaries. We note that the video material is from
professional tennis players. These players rarely shoot the ball far
outside the court, and the synthetically created trajectories always
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Table 4: Ablation study of input features on all HBNet+WASB
trajectories.

Image World
Input RE T.acc T.F1 LE

Image Trajectory 48.25 px 41.35% 0.289 4.13 m
Image Trajectory
+ court corners 41.31 px 53.85% 0.398 3.78 m

Figure 8: Tile F1-scores of each of the 12 defined tiles on
HBNet+WASB trajectories.

land within the court. Therefore, it might be valuable for the model
to have additional information on where the trajectory should be
within the court.

4.6 SynthNet vs. Baseline
We compare our method of estimating initial conditions with a
simplified version of the previously used approach. The problem
is formulated as an optimization task minimizing only the repro-
jection error, which we solve by Powell’s method [14]. Small ex-
periments using additional loss terms like start/landing loss were
made but yielded no definitive results, thus we chose to use this
simplified version. Table 5 shows the results for the optimizer and
SynthNet on HBNet+WASB trajectories. On one hand, we see the
optimizer generally yields a much lower reprojection error. This
is expected based on the design which employs the reprojection
error as its loss function and SynthNet does not. On the other hand,
SynthNet generally results in better tile accuracy, tile F1-score, and
landing error, indicating that it performs better than the previous
optimizer. Manual inspection of the predicted trajectories supports
the conclusion that SynthNet generally outperforms the simplified
Baseline method. Additional practical benefits of SynthNet over the
reference method are that our proposed approach is more suitable

for real-life scenarios because it does not need the camera param-
eters of the trajectory which the optimizer relies on. This implies
that SynthNet does not require estimates of the camera parameters
for the video. It instead extracts the aforementioned features. Ad-
ditionally, since SynthNet is already trained, running inference is
much faster than with the optimizer as it needs to search for the
optimal set of initial conditions for every shot individually.

4.7 Limitations
While the unique approach of SynthNet demonstrates encouraging
results for monocular 3D reconstruction in tennis, several limita-
tions and challenges persist.

Considering that some players can shoot the ball with a velocity
of up to 70 m/s, the ball can travel 2.3 meters in one frame. This
implies that the provided frame rate of 30 frames per second (FPS)
introduces limitations. When the ball moves faster than the FPS can
capture, the bounces and hits are likely not exactly in the annotated
frames but somewhere between two frames. In this scenario, the
landing error is misleading because

we assume that the ball hits the ground in the annotated bounce.
Therefore, the error could be decreased with a higher frame rate.

Another limitation is the metrics to evaluate the models. The
only metric that can reliably describe the performance of the 3D-
constructed trajectory is the reconstruction error, which we do
not have for the real data. Since the reprojection error does not
capture important aspects, we introduced new metrics to gauge the
performance of our method more accurately. However, these addi-
tional metrics only examine the trajectory ending, not its starting
position.

Lastly, we observed the situation where the ball bounces on
the net poses challenges. This situation is annotated as a non-hit
but appears very similar to a bounce. Furthermore, 3D trajectory
reconstruction fails hard in these cases because 3D trajectory re-
construction does not consider these cases when modeling with
Euler’s method from initial conditions. This has a fatal effect on
performance and yields unusually high reprojection errors which
we choose to filter out in the worst cases.

While bouncing on the net is an uncommon occurrence in real-
world scenarios, a model tailored to this domain should be able to
handle those edge-cases.

4.8 Future Works
In this study, we choose to estimate hit-to-bounce trajectories. A
possible addition is a method that models the bounce-to-hit trajec-
tories. Another future avenue entails fine-tuning the synthetically
trained model on real data. Additionally, adding more data with
varying camera angles would likely make it more robust to different
camera angles and out-of-distribution shots. Alternatively, creating
synthetic camera parameters could have prevented the issues with
the initial conditions in the 𝑦-direction. Lastly, experimenting with
incorporating spin in the reconstructed 3D trajectories by adding
3D additional initial conditions to the model output yielded no con-
clusive positive results. However, this will be a priority in future
approaches, as spin is an essential factor in tennis.
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Table 5: Optimizer and SynthNet performance on HBNET + WASB trajectories

Image World
Model 𝑅𝐸 𝑅𝐸 T.acc T.F1 𝐿𝐸 𝐿𝐸

Optimizer 12.20 px 6.55 px 40.71% 0.371 5.11 m 3.09 m
SynthNet 41.31 px 31.82 px 53.85% 0.398 3.78 m 2.4 m

5 CONCLUSION
We proposed an end-to-end pipeline that reconstructs 3D tennis
ball trajectories from monocular video.

The first part of the pipeline is a GRU-based model, which uses
image trajectory, player positions, and court corners to detect hits
and bounces in tennis matches. Using these predictions to define
shots and their trajectories, we test a neural network to predict
initial conditions for a 3D reconstruction of the shots’ image trajec-
tory. The method achieves good results in both reprojection error,
in our own proposed metrics, and when visually inspecting the
created trajectories. However, it has difficulties determining the
exact start positions, especially for the player furthest from the
camera, as well as struggles with outlier shots.

We compare our results to a simplified established approach
from previous research and conclude that our methods achieve
better results. Although our method achieves a worse reprojection
error, it performs better on landing error, tile accuracy & tile f1-
score, and 3D reconstruction error. Furthermore, SynthNet is more
efficient and generalizes well, since it does not rely on camera
parameters. Thus, we believe our approach is more reliable for the
reconstruction of 3D trajectories.
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