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Fig. 1: Our semantic image editing. We present new methods for finding interpretable disentangled semantic directions
in the latent space of DDMs. Specifically, we propose a supervised (left) and two unsupervised (right) methods, where the
latter finds either global directions based on a collection of images or local directions based on the analysis of a single
sample.

Abstract— Denoising Diffusion Models (DDMs) have emerged
as a strong competitor to Generative Adversarial Networks
(GANs). However, despite their widespread use in image syn-
thesis and editing applications, their latent space is still not as
well understood. Recently, a semantic latent space for DDMs,
coined ‘h-space’, was shown to facilitate semantic image editing
in a way reminiscent of GANs. The h-space is comprised of
the bottleneck activations in the DDM’s denoiser across all
timesteps of the diffusion process. In this paper, we explore
the properties of h-space and propose several novel methods
for finding meaningful semantic directions within it. We start
by studying unsupervised methods for revealing interpretable
semantic directions in pretrained DDMs. Specifically, we show
that interpretable directions emerge as the principal compo-
nents in the latent space. Additionally, we provide a novel
method for discovering image-specific semantic directions by
spectral analysis of the Jacobian of the denoiser w.r.t. the latent
code. Next, we extend the analysis by finding directions in a
supervised fashion in unconditional DDMs. We demonstrate
how such directions can be found by annotating generated
samples with a domain-specific attribute classifier. We further
show how to semantically disentangle the found directions by
simple linear projection. Our approaches are applicable without
requiring any architectural modifications, text-based guidance,
CLIP-based optimization, or model fine-tuning.

I. INTRODUCTION

Denoising Diffusion Models (DDMs) [38] have emerged
as a strong alternative to Generative Adversarial Networks

(GANs) [5]. Today, they outperform GANs in unconditional
image synthesis [3], a task in which GANs have been
dominating in recent years. Besides synthesizing high-quality
and diverse images, DDMs can also be used for conditional
synthesis tasks by guiding them on various user inputs
[10], such as a user-provided reference image [13], [17]
or a text-prompt by utilizing Contrastive Language-Image
Pretraining (CLIP) [23]. Conditional DDMs have seen great
success, particularly in the context of text-based synthesis.
Specifically, recent large-scale text-conditional systems like
DALL-E [27], [26], Stable Diffusion [28] and Imagen [34]
have sparked a surge of research related to text-driven
image editing using DDMs [19], [18], [4], [32], [11], [12],
[8], [42], [2]. While there has been extensive research on
finding disentangled editing directions in the latent space
of unconditional GANs [1], [35], [7], [6], [37], [40], [25],
comparatively little work has been done on this topic for
unconditional DDMs. Despite their popularity, it is still not
well understood how to leverage the latent space of DDMs
for semantic image editing in the unconditional setting, i.e.,
in the absence of CLIP-guidance and without conditioning
on a reference image.

In this paper, we propose novel editing techniques by
utilizing the semantic latent space of DDMs which was
recently proposed by Kwon et al. [14]. The semantic latent



space, coined ‘h-space’, is the space of the deepest feature
maps of the denoiser. Our research explores supervised and
unsupervised methods for finding semantically interpretable
editing directions in unconditional DDMs.

We start by proposing two unsupervised methods. In
Sec. IV, we demonstrate that interpretable editing directions,
like pose, gender, and age emerge as the principal compo-
nents in the semantic latent space. Additionally, we propose
a novel unsupervised method for discovering image-specific
semantic directions resulting in highly localized edits like
opening/closing of the mouth and eyes that can also be
applied to other samples. We illustrate a selection of these
unsupervised editing directions in Fig. 1 (right pane). Next,
in Sec. V, we utilize the linear properties of the semantic
latent space and propose a simple supervised method for find-
ing interpretable editing directions, like age and gender or the
appearance of glasses or a smile. We illustrate examples of
these edits in Fig. 1 (left pane). We demonstrate our approach
by annotating samples generated by an unconditional DDM
using a pretrained attribute classifier. We further propose
a simple method for disentangling directions that affect
multiple attributes. Our approaches allow for intuitive and
semantically disentangled image editing and can be applied
to the latent space of DDMs without requiring any CLIP
guidance, fine-tuning, optimization or any adaptations to the
architecture of existing DDMs.

To summarize the contributions of this paper are the
following:

• We propose an unsupervised method to uncover seman-
tically meaningful directions in the h-space by PCA.

• Our method successfully identifies image-specific se-
mantically meaningful directions corresponding to
highly localized changes.

• We demonstrate a supervised approach to obtain latent
directions corresponding to well-defined labels.

• We propose a conditional manipulation in h-space to
disentangle semantic directions.

• The code for this project is available at https://
github.com/renhaa/semantic-diffusion.

II. RELATED WORK

A. The latent space of diffusion models
GANs have a well-defined latent space suitable for seman-

tic editing. To which extent DDMs possess such a convenient
latent space is still a topic of ongoing research. Here we start
by reviewing two approaches for defining a latent space in
DDMs that facilitate semantic editing.

Using DDIM sampling proposed by Song et al. [39],
the generative process is a deterministic mapping from a
Gaussian noise vector xT ∼ N (0, I) to a sampled image x0.
In the DDIM framework, the fully noised image xT , can
be regarded as the latent representation. DDIM has the
property that fixing xT leads to images with similar high-
level features irrespective of the length of the generative
process. Furthermore, interpolating between two latent codes
x
(1)
T and x

(2)
T leads to images that vary smoothly between

the two corresponding endpoint images, x(1)
0 and x

(2)
0 .

Kwon et al. [14] propose h-space for DDMs, the set
of bottleneck feature maps of the U-Net [29] across all
timesteps, {hT , . . . ,h1} as the latent space. Each bottleneck
feature map ht has a lower spatial dimension but more
channels than the output image. They show that semantics
can be edited by adding offsets ∆ht to the feature maps
during the generative process. To find editing directions, they
use an optimization procedure involving CLIP, where the
semantics to be edited are described by text prompts. The h-
space has the following properties: (i) a direction ∆ht has the
same semantic effect on different samples; (ii) the magnitude
of ∆ht controls the strength of the edit; (iii) h-space is
additive in the sense that applying a linear combination of
different directions where each ∆ht corresponds to a distinct
attribute, results in a generated image where all attributes
have been changed.

B. Semantic image editing in generative models

Semantic editing has been widely explored in GANs [35],
[7], [6], [37], [40], [21], [25], [41], [46]. Shen et al. [35]
used a binary classifier to annotate generated samples and
trained a SVM to separate classes like pose, age, and gender.
The corresponding linear directions in latent space were then
defined as the normal vectors of the separating hyper-planes.
Härkönen et al. [7] found interpretable control directions
in pretrained GANs by applying principal components of
latent codes to appropriate layers of the generator. Another
line of work [6], [37], [40], [48] uses various factorization
techniques to define meaningful directions in the latent space
of GANs.

Semantic image editing has also been shown in DDMs but
many existing methods make adaptations to the architecture,
employ text-based optimization or model fine-tuning. In
DiffusionAE [22], a DDM was trained in conjunction with
an image encoder. This enabled attribute manipulation on
real images, including modifications of gender, age, and
smile, but requires modifying the DDM architecture. Another
line of work includes DiffusionCLIP [12], Imagic [11], and
UniTune [43], combined CLIP-based text guidance with
model fine-tuning. Unlike these methods, our approaches do
not require CLIP-based text-guidance nor model fine-tuning
and can be applied to existing DDMs without retraining or
adapting the architecture.

We acknowledge as concurrent work the unsupervised
method proposed by Park et al. [20]. They perform spectral
analysis on the Jacobian of a mapping from pixel space to a
reduced h-space consisting of the sum-pooled feature map of
the bottleneck representation. In comparison, our proposed
method is able to operate on the full bottleneck represen-
tation using power iteration to circumvent the intractable
computational cost of calculating the Jacobian explicitly.
We further propose to allow for additional region-specific
control by calculating the Jacobian with respect to a region
of interest, allowing for fine-grained and highly localized
semantic editing.

https://github.com/renhaa/semantic-diffusion
https://github.com/renhaa/semantic-diffusion
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(a) Effect of swapping the bottleneck activation.

(b) Vector arithmetic in the semantic latent space.

Fig. 2: Illustration of properties of the h-space. (a) Swap-
ping hT :1 between two samples, S1 and S2, swaps the se-
mantic content without affecting background. (b) Adding the
difference in bottleneck activation hT :1 between a smiling
and non-smiling person results in a smile in a new sample.
The result are shown with strength parameter γ = 1/5.

III. THE SEMANTIC LATENT SPACE OF DDMS

Diffusion models are defined in terms of a forward diffu-
sion process that adds increasing amounts of white Gaussian
noise to a clean image x0 in T steps, and a learned reverse
process that gradually removes the noise. During the forward
process each noisy image xt is generated as

xt =
√
αtx0 +

√
1− αtn, (1)

where n ∼ N (0, I) and the noise schedule is defined by {αt}
. In [39], generating an image from the model is done by
first sampling Gaussian noise xT ∼ N (0, I), which is then
denoised following the approximate reverse diffusion process

xt−1 =
√
αt−1Pt(ϵ

θ
t (xt)) +Dt(ϵ

θ
t (xt)) + σtzt, (2)

where zt ∼ N (0, I). Here ϵθt is a neural network (usually a
U-Net [29]), which is trained to predict n from xt, and the
terms

Pt(ϵ
θ
t (xt)) =

xt −
√
1− αtϵ

θ
t (xt)√

αt
(3)

and

Dt(ϵ
θ
t (xt)) =

√
1− αt−1 − σ2

t ϵ
θ
t (xt) (4)

are the predicted x0 and the direction pointing to xt at
timestep t, respectively. The variance σt is taken to be

σt = ηt
√
(1− αt−1)/(1− αt)

√
1− αt/αt−1. (5)

The special case where ηt = 0 for all t is called DDIM [39].
In this setting the noise variance is σt = 0, so that the
sampling process is deterministic and fully reversible [9], [3]
(i.e., xT can be uniquely obtained from x0). The case where
ηt = 1 corresponds to the stochastic DDPM scheme [9].

Following Kwon et al. [14], we study the semantic latent
space of DDMs corresponding to the activation of the bottle-
neck feature maps of the U-Net. We denote the concatenation
of the bottleneck activation across all timesteps as hT :1

see supplementary material (SM) Sec. A for illustration and
additional details. In [14] image editing was performed via
an asymetric reverse process (Asyrp), where ∆ht is only
injected into Pt of (2) and not to Dt. Empirically, we find
that Asyrp amplifies the effect of the edits but semantic
editing is also possible without using Asyrp. In this paper,
we inject ∆ht into both terms of (2). This has the benefit
of only requiring a single forward pass of the U-Net at each
step of the sampling process, as opposed to the two forward
passes needed in Asyrp (one for Pt with injection and one
for Dt without the injection). In SM Sec. B we provide a
comparison of the effect of editing with and without using
Asyrp.

The bottleneck activation ht is determined directly from xt

in each step of the generative process. It is worth noting
that although most of the high-level semantic content of the
generated image is determined by hT :1, it is not a complete
latent representation in the sense that it does not completely
specify the generated image. We illustrate this point in
Fig. 2a where we swap hT :1 between two samples while
keeping {xT , zT :1} fixed. We observe that swapping hT :1

results in a swap of the high-level semantics, like the gender,
but not the background.

A key property of h-space is that it obeys vector arithmetic
properties which have previously been demonstrated for
GANs by Radford et al. [24]. Specifically, image editing
can be done in h-space as follows. Suppose we have found
a direction vT :1 associated with some semantic content that
we wish to apply to a sample with latent code hT :1. Then
h
(edit)
T :1 = hT :1+γvT :1 is the latent code of the edited image,

where γ controls the strength of the edit. In Fig. 2b we
illustrate the vector arithmetic property of h-space by adding
a difference vector which has the semantic effect of adding
a smile.

IV. UNSUPERVISED SEMANTIC DIRECTIONS

A. Principal component analysis

Our first goal is to uncover interesting semantic directions
in an unsupervised fashion. To this end, we first explore the
use of principal component analysis (PCA) in h-space. In
the context of GANs [7], it was shown that the principal
components of a collection of randomly sampled latent codes
result in semantically interpretable editing directions. Here
we demonstrate that the same is true for DDMs if the
PCA is performed in the semantic h-space. Specifically,
we consider PCA where we generate n random samples
and save the bottleneck activation h

(i)
t for each sample i

at all timesteps. Then, for each timestep t we vectorize
{h(i)

t }ni=1 and calculate the principal components. We use
Incremental PCA [30] in order to calculate PCA on more
samples than would otherwise fit in memory. We define the
editing direction vj as a concatenation of the j’th principal
component from all timesteps. To demonstrate our method,
we use Diffusers [44] and a DDPM1 trained on the CelebA

1https://huggingface.co/google/
ddpm-ema-celebahq-256

https://huggingface.co/google/ddpm-ema-celebahq-256
https://huggingface.co/google/ddpm-ema-celebahq-256


Fig. 3: PCA in the semantic latent space. PCA in h-space
provides a way for discovering disentangled and semantically
meaningful directions. Here we show a selection of semantic
edits corresponding to pose, smile, gender and age.

[16] data set. Unless stated otherwise, all results use ηt = 1
during the synthesis process.

It can be seen that many principal directions have clear
semantic interpretations, Fig. 3 demonstrates the effect of
several of these directions, including directions correspond-
ing to gender, pose, age, and smile. Fig. 4a and 4b compares
the effect of applying the two dominant principal components
to random directions. For a fair comparison, we set the
norm of ∆ht for the random directions to match that of
the principal components. While interpolating along principal
directions leads to semantically interpretable edits, shifting
along random directions only induces minor changes to the
image at small scales and rapid degradation of the image at
larger scales.

B. Discovering image-specific semantic edits

The directions found with PCA are computed based on
many samples and tend to find global changes such as pose
and gender, while more local changes like the closing of the
eyes are absent. The smile direction is the only direction
we observed where the semantic changes are localized to a
specific region like the mouth. In the following, we present a
method to find directions that are specific to a single image
and region of interest.

To find directions specific to a single image we wish to
find a set of orthogonal directions in h-space that induce
the largest change in the prediction of the clean image
Pt(ϵ

θ
t (xt)) at every timestep. This is equivalent to finding

the directions that change ϵθt (xt) the most (see SM Sec. C).
For small perturbations, these directions are the top right-
hand singular vectors of the Jacobian of ϵθt with respect to
ht. Due to the skip-connections in the U-Net, the output
of the network depends on both xt and ht. Yet, here we
only consider the dependency on the latent variable ht. In

(a) Two dominant PCA directions

(b) Random directions

Fig. 4: PCA v. random directions While directions found
with PCA have a clear semantic meaning, like pose and
gender, interpolating along random directions results in only
minor changes to the image when using the same scale.
Increasing the scale results in a degradation of the image.

the following, we denote the Jacobian of ϵθt by Jt and its
singular value decomposition (SVD) as

Jt ≜
∂ϵθt (xt,ht)

∂ht
= UtΣtV

T
t . (6)

The right singular vectors corresponding to the largest
singular values, (the columns of Vt) are the set of orthogonal
vectors in h-space which perturb the predicted image the
most. Note that for each timestep t, we have a different set of
directions. In practice, we find that semantically interesting
effects are obtained by applying directions found at timestep
t across all timesteps. Thus, computing k directions per
timestep provide us kT potential edits in each of the T
timesteps. In SM Sec. D, we illustrate the qualitative dif-
ference between directions computed at different timesteps.

In practice, calculating Jt directly is computationally
expensive. Instead, we find the dominant singular vectors by
power-iteration over the matrix JT

t Jt, whose eigenvectors
are precisely the right singular vectors of Jt. Each iteration
requires multiplication by JT

t Jt, which can be computed
without ever storing the Jacobian matrix in memory. Specifi-
cally, for any vector v, the product JT

t Jtv can be computed
as

JT
t Jtv =

∂

∂ht

〈
ϵθt (xt,ht),Jtv

〉
(7)

with

Jtv =
∂

∂a
ϵθt (xt,ht + av)

∣∣∣∣
a=0

. (8)

Our algorithm is summarized in Alg. 1 and uses (7)
to calculate the singular vectors of the Jacobian of an



Fig. 5: Unsupervised image-specific edits. Spectral analysis of the Jacobian of ϵθt yields directions corresponding to
localized changes in the generated image, e.g. eyes opening/closing and raising of the eyebrows. Although this method is
image-specific, directions found for one sample can be transferred to others, where they result in semantically similar edits.

Algorithm 1 Jacobian subspace iteration

Input: f : Rdin → Rdout , h ∈ Rdin and V ∈ Rdin×k

Output: (U,Σ,VT) – k largest singular values and singular
vectors of the Jacobian ∂f/∂h
y← f(h)
if V is empty then

V← i.i.d. standard Gaussian samples
end if
Q,R← QR(V) ▷ Reduced QR decomposition
V← Q ▷ Ensures VTV = I
while stopping criteria do

U← ∂f(h1T
k + aV)/∂a at a = 0 ▷ Batch forward

V̂← ∂(UTy)/∂h
V,Σ2,R← SVD(V̂) ▷ Reduced SVD

end while
Orthonormalize U

arbitrary vector-valued function f . The algorithm starts by
randomly initializing a set of vectors {vi}ki=1 and iterative
computes (7) using automatic differentiation while enforcing
orthogonality among the singular vectors. Importantly, it was

shown that batched power iteration with an orthogonalization
step, such as presented here, is guaranteed to converge to the
SVD of positive semi-definite matrices [33, Ch. 5].

Regarding implementation, in (7) we compute a derivative
of high dimensional output w.r.t. a scalar. This is efficiently
done by utilizing forward mode automatic differentiation.
Further, (7) can be calculated in parallel for multiple vectors
using the batched Jacobian-vector product, e.g. in Pytorch.
Since, parallel calculation of a large number of vectors can
be memory intensive, we give a sequential variant of Alg.1
in SM, Sec. E.

Our method identifies semantically meaningful directions
for localized semantic image changes (e.g., eye and mouth
movements), as shown in Fig. 5. Although these directions
are image-specific, they consistently produce similar changes
across different images, demonstrating the effectiveness and
generalizability of our approach. This is illustrated in the
lower part of Fig. 5 where each of the found editing
directions is applied with the same magnitude γ across a
selection of samples. These results suggest that our approach
is effective in identifying meaningful semantic directions that
generalize across different images.

If additional information is available in the form of a mask



Fig. 6: Region-specific edits. Given a mask specifying a region of interest, our method can be guided to focus on finding
directions which change only the target area. The first column shows the input with the mask shown in green.

specifying a region of interest, our method can be naturally
extended by applying the mask to the noise prediction ϵ̃θt
in order to find directions in h-space that change a specific
region the most rather than the whole image. We seek the
singular vectors of the Jacobian of the masked output of the
U-net. We define the a masked Jacobian Jmasked

t as

Jmasked
t = ∂ϵ̃θt (xt,ht)/∂ht, (9)

ϵ̃θt (xt,ht) = ϵθt (xt,ht)⊙M, (10)

where ⊙ denoted the Hadamard product and M is a binary
mask corresponding to a region of interest. We show exam-
ples of such region-specific edits in Fig. 6.

V. SUPERVISED DISCOVERY OF SEMANTIC DIRECTIONS

While the methods we presented in Sec. IV discover
interpretable semantic directions in a fully unsupervised
fashion, their effects must be interpreted manually. In this
section, we demonstrate a simple supervised approach to
obtain latent directions corresponding to well-defined labels.

a) Linear semantic directions from examples: The vec-
tor arithmetic property of h-space suggests an intuitive
method for discovering semantically meaningful directions,
by providing positive and negative examples of a desired
attribute. Let {(x−

i ,x
+
i )}ni=1 be a collection of generated

images, such that all x+
i have a desired attribute that is

absent in x−
i , e.g. a smile, old age, glasses, etc. Let q−

i

and q+
i denote the latent representation corresponding to the

images x−
i and x+

i . Then, we can find a semantic direction v
as

v =
1

n

n∑
i=1

(
q+
i − q−

i

)
. (11)

Note that this method can be applied using either hT :1

or xT as the latent variable. However, defining semantic
directions using hT :1 as the latent variable requires far fewer
samples than using xT . Figure 8a illustrates this for DDIM
(ηt = 0) for a direction corresponding to smile where (11)
is calculated using a varying number of samples.

b) Classifier annotation: We now propose to find linear
semantic directions by using pretrained attribute classifiers to
annotate samples generated by the model. Using the attribute
classifier from [15], we annotate samples with probabilities
corresponding to the 40 classes from CelebA [16], and use
Hopenet [31] to predict pose (yaw, pitch, and roll). We sort

the annotated samples according to the attribute scores and
select the samples with the highest and lowest scores from
each class as the positive and negative examples respectively.
We then calculate semantic directions corresponding to the
different attributes using the method given in (11).

As shown in Fig. 7, we can successfully find semantic di-
rections controlling a wide selection of meaningful attributes
like yaw, smile, gender, glasses, and age. Furthermore, di-
rections calculated by (11) can be applied in combination
with one another. For example, adding ∆hT :1 for two
attributes, like pose and smile, results in an image where both
attributes are changed. Fig. 8b illustrates sequential editing,
showcasing changes in expression followed by pose, age, and
eyeglasses for two samples. In SM Sec. F we show that this
method can be applied to find directions corresponding to
facial expressions using DDIM inversion and a real facial
expression dataset [47] as supervision.

c) Disentanglement of semantic directions: Latent di-
rections found by (11) might be semantically entangled,
in the sense that editing in the direction corresponding
to some desired attribute might also induce a change in
some other undesired attributes. For example, a direction
for eyeglasses may also affect the age if it correlates with
eyeglasses in the training data. To remedy this, we propose
conditional manipulation in h-space in a way similar to
what was suggested in the context of GANs by Shen et
al. [35], [36]. Let v1 and v2 be two linear semantic direc-
tions, where the two corresponding semantic attributes are
entangled. We can define a new direction v1⊥2 which only
affects the semantics associated with v1, without changing
the semantics associated with v2. This is done simply by
removing from v1 the projection of v1 onto v2, namely
v1⊥2 = v1 − ⟨v1,v2⟩/∥v2∥2v2. In case of conditioning on
multiple semantics simultaneously, our aim is to remove the
effects of a collection of k directions {vi}ki=1 from a primal
direction v0 in order to define a new direction v which only
affects the target attribute. This can be done by constructing
the matrix V = [v1,v2, · · · ,vk] and projecting v0 onto the
orthogonal complement of the column space of V by

v =
[
I−V

(
VTV

)−1
VT

]
v0. (12)

The resulting direction will be disentangled from each of the
directions {vi}, meaning that moving a sample along this
new direction will result in a large change in the attribute



(a) Yaw (b) Smile

(c) Gender (d) Pitch

(e) Glasses (f) Age

Fig. 7: Single attribute manipulation. Using a domain-
specific binary attribute classifier, we find linear directions
in h-space corresponding to a variety of semantic edits.

associated with v0 while minimally affecting the attributes
associated with the other directions. Figure. 9 visualizes
the effect of interpolating in the directions of age and
eyeglasses for two samples. As can be seen, these directions
are entangled with gender and age, respectively. By using
our method we can successfully remove the entanglement
and define a direction which only affects age or the presence
of glasses.

To validate the effectiveness of our disentanglement strat-
egy, we performed an experiment where we edited attributes
corresponding to smile, glasses, age, gender, and wearing
a hat. We edited samples using both the original and the
disentangled directions while measuring the effect of each
edit using CLIP [23] as a zero-shot classifier. We se-
lected appropriate positive and negative prompts for each at-
tribute. For smiling, glasses, and hat we used "A smiling
person", "A person wearing glasses" and "A
person wearing a hat" for the positive prompts re-
spectively, and "A person" as the negative prompt. For
age and gender, we used "A man" / "A woman" and "An
old person" / "A young person" respectively. For
each sample, we edited each of the five attributes and
measured the change in attribute score according to CLIP.
Table I shows the results. We can see that the original
directions are highly entangled with other attributes while
the disentangled directions induce the largest changes in the
intended attributes. This demonstrates that semantic direc-

(a) Editing in h-space vs. using xT .

(b) Sequential manipulation.

Fig. 8: Editing properties of h-space. (a) A qualitative
comparison of the editing effect using xT (top) and hT :1

(bottom). Latent variables using a smiling direction found
by (11). While the direction in h-space converges with a few
labeled examples, more than 200 are required to achieve a
similar result using xT as the latent variable. (b) Directions
found with our method can be combined with one another.
Here, we sequentially accumulate four effects, starting from
a single effect in the 2nd column up to four effects in the
5th column.

tions can be disentangled by a simple linear projection.

VI. DISCUSSION AND CONCLUSION

We presented several supervised and unsupervised meth-
ods for finding interpretable directions in the recently pro-
posed semantic latent space of Denoising Diffusion Models.
We showed that the principal components in latent space
correspond to global and semantically meaningful editing
directions like pose, gender, and age. Additionally, we pro-
posed a novel method for discovering directions based on
a single input image. These directions correspond to highly
localized changes in generated images, such as raising the
eyebrows or opening/closing the mouth and eyes. Although
these directions were found with respect to a specific image
they can be transferred to different samples.

As our proposed methods enable high-quality editing of
face images, we provide a broader impact statement in SM
Sec. G. Although our unsupervised approaches are effective
in discovering meaningful semantics when the DDM was
trained on aligned data like human faces, we found that
models trained on less structured data have less interpretable
principal directions. We refer the reader to SM Sec. H for
experiments on models trained on churches and bedrooms.

Further, we proposed a conceptually simple supervised



Fig. 9: Disentanglement of semantic directions. Given a direction that is entangled with other attributes, we can create
a disentangled direction by removing the projection onto undesired semantics. The top row shows the original direction,
whereas the bottom row shows the disentangled direction.

TABLE I: Evaluation of disentanglement strategy. We quantitatively evaluate the effect of disentangling semantic directions
using linear projection. The rows correspond to the applied directions, while the columns correspond to the effect of the
edits according to CLIP. We draw and edit 100 random samples and repeat the experiment 10 times with different seeds
and report the mean and standard deviations. The strongest effect in each row is highlighted.

Edit
Effect Smile Glasses Age Gender Hat Smile Glasses Age Gender Hat

Original directions Disentangled directions
Smile 0.26±0.02 0.29±0.02 0.08±0.02 0.31±0.04 0.07±0.01 0.24±0.02 0.20±0.02 0.04±0.02 0.09±0.03 0.03±0.01
Glasses 0.48±0.02 0.32±0.02 0.68±0.03 0.66±0.04 0.14±0.02 0.22±0.01 0.38±0.02 0.13±0.02 0.07±0.03 0.36±0.02
Age 0.07±0.01 0.40±0.03 0.74±0.03 0.66±0.04 0.18±0.01 0.02±0.02 0.38±0.03 0.59±0.04 0.16±0.03 0.04±0.02
Gender 0.40±0.02 0.28±0.03 0.58±0.03 0.66±0.04 0.09±0.02 0.20±0.02 0.01±0.01 0.08±0.02 0.39±0.03 0.07±0.02
Hat 0.42±0.02 0.39±0.02 0.37±0.03 0.66±0.04 0.41±0.02 0.13±0.01 0.03±0.03 0.02±0.03 0.02±0.09 0.44±0.02

method utilizing the linear properties of the semantic latent
space. We showed that a diverse set of face semantics can
be revealed using an attribute classifier to annotate samples.
Finally, we demonstrated that simple linear projection is
an effective strategy for disentangling otherwise correlated
semantic directions. All of our proposed methods apply
to pretrained DDMs without requiring any adaptation to
the model architecture, fine-tuning, optimization, or text-
based guidance. Possible future avenues of our work include
applications of the proposed approaches on different data
domains.
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APPENDIX

Supplemental Materials

A. Illustration of h-space.

In this paper, we define h-space as the space of bottleneck activations ht across each of the T timesteps in the synthesis
process. See illustration in Fig. 10. Each downsampling block increases the number of channels while decreasing the spacial
dimension of the feature maps. In our case, using the pretrained DDPM model trained on CelebA released by Google2. The
input pixel space has dimensions (3, 256, 256) and the deepest feature map has dimensions (512, 8, 8). Thus an element of
h-space, hT :1, has dimensions (T, 512, 8, 8) and is defined as

hT :1 = hT ⊗ hT−1 ⊗ · · · ⊗ h2 ⊗ h1. (13)

We apply directions in h space by perturbing hT :1 with some offset as hT :1 + ∆hT :1 during the generative process in
(2). When ηt ̸= 0 the clean image is completely specified by the triple (xT , zT :1,∆hT :1) and for ηt = 0 (DDIM) it is
determined by the tuple (xT ,∆hT :1).

B. The effect of Asyrp

In the main text, we stated that using Asyrp [14] acts to amplify the effect edits in h-space. However, Asyrp is
computationally costly since it requires two forward passes of the U-Net at each denoising step. Hence, Asyrp is not
used for any of the results shown in the main paper. In Figs. 11 and 12 we qualitatively compare edits with and without
using Asyrp. We observe that simply adjusting the scale of the applied direction results in very similar edits.

Downsample

+Middle
Block Upsample

Upsample

Upsample

Upsample

Downsample

Downsample

Downsample

-space

Fig. 10: Illustration of h-space. In this paper, we define the semantic latent space of DDMs as the activation after the
deepest bottleneck layer of the U-Net.

2https://huggingface.co/google/ddpm-ema-celebahq-256

https://huggingface.co/google/ddpm-ema-celebahq-256


(a) Eyes (b) Mouth

Fig. 11: The Effect of Asyrp. Results are shown for directions found with Alg. 1.

(a) Age (b) Rotation

(c) Gender (d) Glasses

Fig. 12: The effect of Asyrp. Results are shown for directions found using the supervised method presented in Sec. V.



C. A Note on image-specific directions

In the main paper, we state that the right singular vectors of the Jacobian of ϵθt with respect to h-space, denoted as Jt,
are the set of orthogonal vectors in h-space which perturb the noise prediction ϵθt the most. An equivalent statement is that
those right singular vectors perturb the predicted image Pt(xt,ht) at timestep t the most. Specifically, since

Pt(xt,ht) =
xt −

√
1− αt√
αt

ϵθt (xt,ht) (14)

we have that

∂

∂ht
Pt(xt,ht) = −

√
1− αt√
αt

∂

∂ht
(15)

ϵθt (xt,ht) = −
√
1− αt√
αt

Jt. (16)

Thus, the eigenvectors of (∂Pt/∂ht)
T(∂Pt/∂ht) and JT

t Jt are the same with the same ordering.

D. Image-specific directions at different timesteps

Our proposed image-specific unsupervised method in Alg. 1 finds different directions for each timestep. In Figures 13, 14,
15 and 16 we show the effect of the three dominant directions (the three top singular vectors of the Jacobian) at different
timesteps along the reverse diffusion process.



Fig. 13: Directions found by Alg. 1.



Fig. 14: Directions found by Alg. 1.



Fig. 15: Directions found by Alg. 1.



Fig. 16: Directions found by Alg. 1.



E. Sequential algorithm for Jacobian subspace iteration

As mentioned in the main text, Alg. 1 can be memory intensive when calculating a large number of singular vectors in
parallel. In cases where limited memory is available, we provide an alternative sequential version of our method in Alg. 2.
Here we calculate the singular values and vectors in mini-batches of size b. The value of b should be set according to the
parallel computation capacity. For example, in the special case of b = 1, the algorithm computes the vectors one by one
and will use small memory. Note that lowering the mini-batch size b comes at the expense of longer running time.

Algorithm 2 Sequential Jacobian subspace iteration

Input: function to differentiate f : Rdin → Rdout , point at which to differentiate h ∈ Rdin , initial guess Θ ∈ Rdin×k [optional],
mini-batch size b < k

Output: (U,Σ,VT) – k top singular values and vectors of the Jacobian ∂f/∂h
Initialization: y← f(h), istart ← 1, iend ← b, V← [ ], Σ← [ ], U← [ ]
while istart ≤ k do

if Θ is empty then
Φ← i.i.d. standard Gaussian samples in Rdin×(iend−istart+1)

else
Φ← columns istart to iend of Θ

end if
Q,R← QR(Φ) ▷ Reduced QR decomposition
Φ← Q ▷ Ensures ΦTΦ = I
while stopping criterion do

if V is not empty then
Φ←

[
I−V

(
VTV

)−1
VT

]
Φ

Φ,R← QR(Φ) ▷ Reduced QR decomposition
end if
Ψ← ∂f(h+ aΦ)/∂a at a = 0 ▷ Batch forward
Φ̂← ∂(ΨTy)/∂h
Φ,S,R← SVD(Φ̂) ▷ Reduced SVD

end while
V← [V;Φ]

Σ←
[
Σ 0
0 S1/2

]
U← [U;Ψ]
istart ← istart + b
iend ← min{iend + b, k}

end while
Orthonormalize U



F. Facial expressions from real data.

We conducted an additional experiment where domain-specific semantic directions were extracted using real images as
supervision. We wish to find directions corresponding to expressions like happiness, sadness, and surprise. Here we used
the BU3DFE data set [47]. BU3DFE contains real images of 100 subjects, each performing a neutral expression in addition
to each of the prototypical facial expressions at various intensity levels. Using DDIM inversion (ηt = 0) we recorded hT :1

during the inversion process and used (11) to calculate directions. We used the most intense expressions for the positive
examples and the neutral expressions for the negative examples. The effect of the directions found using our method is shown
in Fig. 17. The extracted directions are shown on generated samples. The figure shows that latent directions in h-space can
successfully be found by applying our supervised method presented in Sec. V-.0.b on a dataset of real images.

Fig. 17: Facial expressions from real data. We extract semantic directions corresponding to different facial expressions
using a data set of real images. The directions are calculated via DDIM inversion and applied in the semantic h-space to
synthetic images.

G. Broader impact

In this paper, we have introduced several techniques for semantic editing of human faces using DDMs. While the creation
of high-quality edited images that are difficult to distinguish from real images has significant positive applications, there is
also the potential for malicious or misleading use, such as in the creation of deepfakes. Although some research has focused
on detecting and mitigating the risk of AI-edited images, these have mostly focused on GANs [45] and, so far, there has
been little research into detecting images that have been edited using DDMs. Given the differences in the generative process
between DDMs and GANs, methods which are effective in detecting images edited by GANs might not be as effective for
images edited by DDMs [17]. Further research is needed to develop effective methods for forensic analysis of edits using
DDMs. Such research could help address the risk of malicious use of image-editing technologies.



H. Unsupervised methods on other domains

In addition to the model3 trained on CelebA, which is used throughout the main paper, we also conducted experiments
with models trained on churches4 and bedrooms5. Although the unsupervised directions found with both PCA and Alg. 1
on these models lead to various changes to the images, these directions are less interpretable than those obtained for faces
in the main paper. We showcase the first 5 PCA directions on the models trained on churches and bedrooms in Figures 18
and 19 and directions found using Alg. 1 in Figures 21 and 20.

Fig. 18: PCA directions. For a DDM trained on churches.

3https://huggingface.co/google/ddpm-ema-celebahq-256
4https://huggingface.co/google/ddpm-ema-church-256
5https://huggingface.co/google/ddpm-ema-bedroom-256

https://huggingface.co/google/ddpm-ema-celebahq-256
https://huggingface.co/google/ddpm-ema-church-256
https://huggingface.co/google/ddpm-ema-bedroom-256


Fig. 19: PCA directions. For a DDM trained on bedrooms.



Fig. 20: Directions found with Alg. 1. For a DDM trained on bedrooms.



Fig. 21: Directions found with Alg. 1. For a DDM trained on churches.
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