Bridging the Sim-to-Real GAP for Underwater Image Segmentation
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Abstract— Labeling images for every new task or data
pattern a model needs to learn is a significant time bottleneck in
real-world applications. Moreover, acquiring the necessary data
for training the models can be challenging. Ideally, one would
train the models with simulated images and adapt them for the
desired real tasks using the least possible amount of data. Active
learning can be used to solve this problem with minimal effort.
In this work, we train SegFormer for pipeline segmentation with
synthetic images from an underwater simulated environment
and fine-tune the model with real underwater pipeline images
recorded in a marina. The evaluation shows that selecting real
data with active learning for fine-tuning the model gives better
results than randomly selecting the images. As part of the work,
we release the dataset recorded in the marina, MarinaPipe,
which will be publicly available.

Index Terms— active learning, computer vision, sim-to-real,
underwater image segmentation

I. INTRODUCTION

Training deep learning models requires good-quality
datasets. Acquiring and labeling data is costly and time-
consuming, making synthetic data an attractive option.
Although modern simulators are highly advanced and close
to real scenarios, a gap still exists between their patterns.

One way to address this gap is to pre-train a model using
synthetic data and then fine-tune it with real data. Yet, this
means acquiring and annotating the dataset, which typically
requires hours of labeling by specialists. Nevertheless,
the datasets usually contain many repetitive patterns that
pre-trained models already recognize. Active learning can
be applied to select the minimal subset of samples that
needs to be used for fine-tuning, based on the model’s lack
of knowledge [1].

In this paper, we study this sim-to-real gap and how to
overcome it in the underwater vision domain, cf. Fig. 1. Real
underwater images pose many challenges, including non-
uniform illumination, low contrast, color degradation, and
motion blur [2], [3], [4], [S]. These are properties that
are challenging to mimic realistically in synthetic images,
making this study relevant. To the best of our knowledge,
this is the first paper studying the sim-to-real gap for RGB
underwater images using active learning. Our contributions
include:

o The use of active learning to fine-tune a model trained
with synthetic data using underwater real data;

¢ An evaluation of the visual transformer SegFormer with
the active learning technique;

o An underwater pipeline dataset, MarinaPipe, publicly
released.
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Fig. 1: Sim-to-Real with Active Learning.

Our experiments show that active learning gives better
results than random selection for overcoming the sim-to-real
gap. Moreover, the model pre-trained with synthetic data and
fine-tuned with real data presented better performance than
the model trained only with real data in almost all image
sequences tested. It is worth using active learning when
having a limited budget for labeling images, since it ensures
the best outcomes.

II. BACKGROUND AND RELATED WORK

Active Learning methods train machine learning models
in an iterative way, beginning with training the model with
an initial subset of samples, typically randomly selected, and
then retraining it with strategically chosen new samples. To
cleverly select these new samples, the uncertainties of the
predictions made by the trained model are computed. These
uncertainties reflect the knowledge, or lack thereof, that
the model has about the input samples. Samples with high
uncertainty are those that the model has less knowledge about
and, therefore, are more beneficial for using while retraining
the model, contrary to the samples with low uncertainty,
about which the model already possesses enough knowledge.

Active learning has been extensively studied with the
goal of training models with the minimal amount of data
necessary to achieve results comparable to the models
trained with the entire dataset. In medical images, for
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instance, the softmax confidence was used as a measure
of uncertainty when segmenting pulmonary nodules [6]
and membrane images [7]. However, softmax can be
overconfident and present high confidence values during
the inference phase for samples that are out-of-distribution
in relation to the training dataset [8]. Other studies using
medical images applied Monte Carlo Dropout (MC-
Dropout) [9] for calculating metrics such as max-entropy
and Bayesian active learning by disagreement (BALD)
as a measure of uncertainty [10], [11]. In the context of
autonomous driving cars, which is closer to underwater
inspection, entropy-based metrics were used for selecting
images for training segmentation models [12], [13], [14].

Since active learning methods retrain the models with
the least amount of data by detecting the samples that the
models do not have sufficient knowledge about, they can be
applied to help overcome the sim-to-real gap with minimal
effort [1]. In this work, we train an underwater pipeline
segmentation model using the synthetic dataset MIMIR [15].
Subsequently, we utilize active learning to select the most
relevant images in a real underwater dataset for fine-tuning
the previously trained model, therefore adapting it to the
specific chosen dataset. To calculate the uncertainty used
for querying new images with active learning, we employ
MC-Dropout, a method largely studied in the deep learning
community for accessing the epistemic uncertainty, which
arises from the model’s lack of knowledge [16], [17]. This
method consists of allowing the dropout layers [18] during
the inference time. Dropout layers temporarily remove neu-
rons in a specific layer with a chosen probability. It means
that when these layers are allowed, the same input can have
different outputs if forward passed through the model more
than once. These layers are originally used during training
to prevent overfitting [18], but can be used for accessing
the epistemic uncertainty during inference [9]. If the outputs
for several forward passes of the same input are similar, it
means that the model has enough knowledge about that input
pattern; if the outputs are very different from each other, it
indicates a lack of knowledge.

III. METHODOLOGY

In this section, we present the methodology and details for
our experiments with pipeline image segmentation: Sec. III-
A presents the pre-training phase using the synthetic dataset
MIMIR [15], Sec. III-B the fine-tuning phase for overcoming
the sim-to-real gap, Sec. III-C the details about the model
structure and the training, and Sec. III-D the datasets used.

A. Pre-Training with Synthetic Data

The first step of the experiments was to train a segmenta-
tion model on the synthetic dataset MIMIR [15]. MIMIR has
several environments, and we used the one called SandPipe,
which contains a single pipeline on the ocean floor. The
images were captured by a camera placed at the bottom of
the autonomous underwater vehicle (AUV) in the simulated
environment, similar to the position of the camera that
collected the real dataset.

Fig. 2: Examples of augmentations applied to MIMIR. Top:
The most left image is the original; the next three are
examples of RGB channels perturbation; and the most right is
a conversion to grayscale. Bottom (from left-to-right): Value
and saturation perturbation; Gaussian blur addition; motion
blur addition; resize with cropping; and rotation. In the
images with blur addition, notice how the object contours get
weaker and how the screw in the pipeline joint "disappears"
(Best viewed online in color with zoom-in.)

We chose to use a visual transformer SegFormer [19] for
segmentation. We modified it to include dropout layers. The
final goal was to use the trained model with real underwater
images. To reduce the overfitting to MIMIR [15], smoothing
the transition from simulation to reality, several randomized
augmentations were performed, Fig. 2:

e Perturbation of the RGB channels and the value and
saturation in the HSV color space;

o Resizing, cropping and flipping;

o Conversion to grayscale;

o Addition of motion and Gaussian blur.

B. Fine-Tuning with Real Data

After training the model with MIMIR [15], the active
learning method was applied to select the most relevant
images from the real underwater dataset for fine-tuning
the model. The mean epistemic uncertainty over all pixels
of each image was used as the acquisition function for
querying new images with the active learning method. For
calculating the mean value for each image, the epistemic
uncertainty of each pixel was first calculated. This work uses
the mutual information, Z, calculated with MC-Dropout,
as the epistemic uncertainty. The MC-Dropout is applied
during the inference phase and consists of forward passing
each input sample 7' times. For a dataset with C classes,
at each forward pass ¢, the model generates for each pixel
a softmax output equal to p; = (pi¢,...,Pct). Using the
outputs p;, the mutual information of each pixel is:

I =H +

Zcht logy(per), (1)

Tlog2 c=1 t=1

where H is the entropy, calculated as:
M 1Og2 ch 085 (p}), )

where p* = (p7, ..., p5) is the average of the predictions p,
over the T" forward passes. Equation (1) and Eq. (2) where di-
vided by log2(C') to normalize the entropy between 0 and 1.
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Fig. 3: MIMIR and MarinaPipe samples.
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Finally, the image uncertainty, EU;ne, was calculated as:
1N

EUmg =+ > EU;, 3)
i=1

where EU; is the mutual information Z defined in Eq. (1)
for the pixel ¢ of an image with N pixels. Images with
high EUjy,, above a chosen threshold TR, were selected for
fine-tuning the SegFormer model that was pre-trained with
MIMIR [15]. The threshold TR was defined as:

TR = Wimg + SO’, 4)

where Wimg and o are the mean and standard deviation
of the values of EUiy, computed for the MIMIR images
using the pre-trained SegFormer. The variable S is a scalar
value defined by the user. Smaller values of \S' ensure a more
rigid tolerance with the uncertainty but mean querying more
images for being labeled. Notice that two values of TR are
calculated, one for the training and the other for the valida-
tion dataset. More details on how to query new images with
the active learning framework are in our previous work [20].

C. Model Structure and Training Details

The segmentation model used in this study was the visual
transformer SegFormer [19] implemented in PyTorch.! We
modified the structure for including dropout layers in the
encoder.

The model was pre-trained from scratch, for 600 epochs,
using cross-entropy loss, Adam optimizer, and an initial
learning rate of 10~*. During the fine-tuning phase with real
data, the decoder and encoder of SegFormer were frozen,
and only the head of the model was allowed to train. At this
phase, the model was trained for 100 epochs, using cross-
entropy loss, Adam optimizer, and an initial learning rate of
10~°. During both pre-training and fine-tuning, the classes
used were background and pipeline.

D. Datasets

Two datasets were used in this paper, cf. Fig. 3.

1) MIMIR: a synthetic multipurpose dataset originating
in a prior study [15], tailored for pipeline tracking, created
in a simulation environment with automatic pixel-wise
labeling for many classes, including pipeline. MIMIR has
several environments, with SandPipe being one of them.
SandPipe has images of a single pipeline, positioned on the
ocean floor. This environment has images recorded from

Based on the implementation from https://github.com/
FrancescoSaverioZuppichini/SegFormer/

TABLE I: Details of MarinaPipe. (Both refers to fine and
coarse labeling.)

Selected Frames

Video f . R Annotation  Occlusions
rames with pipes
1 236 43 Both Yes
2 237 70 Both No
3 260 2 Both No
4 268 11 Both Yes
5 266 45 Coarse Yes
6 270 11 Coarse Yes
7 186 17 Both Yes

Example 1 Example 2

Example 3

Original

Cropped

Fig. 4: Examples of how the video frames were cropped
before being labeled. Top: Original frames. Bottom: Corre-
spondent cropped frames.

three cameras in a simulated AUV. In this study, we use
the images from SandPipe recorded from the bottom of
the AUV facing down the ocean floor. These images were
selected because the images on the MarinaPipe dataset are
visually closer to them than to the images recorded by the
other cameras and on the other environments of MIMIR.

2) MarinaPipe: a real underwater dataset, recorded in
a marina close to the north of Portugal, by our partner
OceanScan-MST. The dataset contains pieces of pipes placed
on the marina floor, filmed using a GoPro camera attached
to a lightweight autonomous underwater vehicle (LAUV).
Seven videos were recorded at 240 frames per second (FPS),
from which we extracted five frames per second to create
the dataset. In some videos, the pipes are partly occluded
by algae. For performing the experiments, which the results
are described in Sec. IV-B, 10% of the frames of each video
were labeled for the task of pipeline segmentation. Table I
provides an overview of the MarinaPipe dataset. This dataset
was originally idealized for training a model that would later
be tested for tracking long pipelines. Because of this, the
extracted frames were cropped before being labeled, so that
the pipe goes through the image, as Fig. 4 shows. The link
for downloading MarinaPipe can be found in the REMARO
GitHub.> We are releasing the original videos, the extracted
frames, Tbl. I, and the frames’ pixel-wise fine and coarse
annotation for the pipeline class in the format of masks.

’https://github.com/remaro-network/
MarinaPipe-dataset
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Fig. 5: Example of prediction on the test dataset of MIMIR
using the model trained on MIMIR. The pipeline and back-
ground color are different from Fig. 3 because MIMIR has
annotation for many classes and we are only using the
pipeline class. Everything that is not pipeline is defined as
background in this paper. For the uncertainty plot, calculated
as the mutual information, the warmer colors represent
higher values.
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Fig. 6: Experimental results: meanloU for the classes
pipeline and background. Results were calculated using the
coarse annotation as ground truth.

IV. RESULTS

The sections below present the results obtained from
our experiment for overcoming the sim-to-real gap. It also
includes a study about the influence of data augmentation,
freezing and unfreezing the decoder layers, the learning rate
values, and the type of annotation used (fine or coarse).

A. Pre-training with MIMIR

From the SandPipe images selected for this study, 90%
were reserved for training, 5% for validating, and the other
5% for testing SegFormer. From the data reserved for train-
ing, part of the images containing only background were
eliminated to diminish the imbalance between this class and
pipeline. After training, the model obtained 88.80% mean
intersection over union (meanloU) on the test dataset, with
81.05% intersection over union (IoU) for the pipeline class
and 96.56% for the background. Figure 5 showcases an
example of prediction using the pre-trained SegFormer on
the MIMIR test subset.

B. Fine-tuning with real data

The experimental results are presented in Fig. 6, where
the legends refer to the following set-ups:

80 Pre-trained
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70 — AC
60 1 EEE Random
— 50 1
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D 40 A
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Fig. 7: Experimental results: IoU of pipeline. Results were
calculated using the coarse annotation as ground truth.

e Pre-trained the model trained only on the MIMIR
dataset at Sec. IV-A.

e Real the model was trained with the data from video
1, Tbl. I, and validated with video 7. Only part of
the frames not containing pipelines were used, for
diminishing the class imbalance. As augmentation, it
was only applied resizing, cropping and flipping.

e Random the model was pre-trained with MIMIR, model
from Sec. IV-A, and then fine-tuned with ca. 45% of
images randomly selected from videos 1 and 7 for
training and validation, respectively. The fine annotation
was used as ground truth.

e AC the model training and fine-tuning was done as in
Random, however the images were chosen with active
learning, instead of at random.

The meanloU results in Figure 6 were calculated using the
coarse annotation as ground truth. For both random and AC,
the same random augmentation techniques from Sec. III-A
were applied to the training and validation images used to
fine-tune the model.

For selecting new images with active learning, AC, we
set S = 3.0 in Eq. (4). This parameter choice resulted in
110 images selected from MarinaPipe for training and 79
for validation. The same number of images were selected
for training and validating the random model.

We found that fine-tuning the model with real images
always reduces the sim-2-real gap. Figure 6 and Figure 7
show that active learning (AC) consistently outperforms
random selection (Random). The results of the pipeline class
in Figure 7 leave room for improvement. The pipeline’s low
IoU may be due to the dataset’s complex patterns, which
may require more annotated data to improve the model’s
performance. Even though the IoU for the pipeline is low,
notice that the model fine-tuned with active learning (AC)
can recognize this object, Fig. 8.
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Fig. 8: Examples of predictions using the model fine-
tuned with active learning, AC, and the respective mutual
information uncertainties. Warmer colors represent higher
uncertainty and reflect the models’ difficulty when predicting
pipelines.
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C. Study of the augmentation, training and structure choices

We fine-tune the model with very few data. To increase
the model’s performance, we used many augmentations and
froze the entire encoder-decoder structure during the fine-
tuning. Now, we present some comparisons between choices
made during the fine-tuning phase. All the analyses were
performed using the same frames used for training and
validating the model AC in Sec. IV-B.

1) Data augmentation: Instead of using all the augmen-
tations listed above, we now only apply resizing, cropping,
and flipping to the data used for fine-tuning the model to test
if so many augmentations were confusing the model.

2) Freeze vs. unfreeze the decoder: For analyzing the
benefits of freezing the decoder during the fine-tuning phase,
now only the encoder was frozen, allowing the decoder and
the model’s head to train.

3) Learning rate: For analyzing the initial learning rate
choice during the fine-tuning, we test setting the initial value
to 10~ instead of 10~°. Both the encoder and decoder were
frozen, and only the head was allowed to train.

Figure 9 shows the results for the last three topics
mentioned. As the figure shows, decreasing the amount
of augmentation and unfreezing the decoder decreased the
model’s performance. Increasing the initial learning rate gave
slightly better results. This was the only model fine-tuned
with an initial learning rate equal to 10~ in this study.

4) Test with fine annotation: As mentioned before, in Sec.
IV-B, the models were fine-tuned using the fine annotation
as ground truth; however, during the inference phase, the
performance was analyzed using the coarse annotation. This
choice has two reasons: (1) videos 5 and 6 only have the
coarse annotation for evaluating the performance, and (2)
apparently, the model learned how to extrapolate the fine
annotation, and the results are better when compared to the
coarse annotation.

5) Learning with coarse annotation: Since evaluating the
performance in the coarse annotation gave better results,

80 - AC
mm few augmentation

mmm unfreeze decoder
mm R=10"*

meanloU [%]

a1
Videos

Fig. 9: These results analyze the influence of the choices for
augmentation techniques, initial learning rate, and the option
of freezing the model’s decoder. AC refers to the model fine-
tuned in Sec. IV-B.
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Fig. 10: Test on coarse and test on fine use the same model,
trained in Sec. IV-B, but one is evaluated using the coarse
annotation as in the referred section and the other using fine
annotation. Train on coarse was trained and evaluated with
coarse annotation. Notice that videos 5 and 6 do not have
the fine annotation for performing the evaluation.

we wonder if training on coarse annotation would result
in a better model. However, as Fig. 10 shows, the results
of training using the coarse annotation were worse. We
hypothesize that this is the case because the fine annotation
gives a more "precise” label, and the model learns better to
differentiate the pipeline from the rest of the image.

Figure 10 shows the results obtained for the tests in Sec.
IV-C.4 and Sec. IV-C.5.

V. CONCLUSION

Active learning is more efficient in reducing the sim-
to-real gap than fine-tuning with random images. The



MarinaPipe dataset has a lot of motion blur and uneven
illumination, which could be the reason for the pipeline
class’s low IoU. Thus, MarinaPipe could be considered an
open challenge to the underwater computer vision research
community. SegFormer was trained with MIMIR from
scratch and then fine-tuned with MarinaPipe. An interesting
next test is to pre-train the model with a larger dataset, such
as COCO, before using MIMIR, and evaluate if it would
result in better IoU for the pipeline class. Even though it
was demonstrated that SegFormer can be used with active
learning, more tests should be performed to study the best
positions to insert the dropout layers in this structure. In
future work, we plan to select more images for labeling, and
rerun the experiments with the additional annotated data.
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