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Abstract

This paper presents, RallyTemPose, a transformer
encoder-decoder model for predicting future badminton
strokes based on previous rally actions. The model uses
court position, skeleton poses, and player-specific embed-
dings to learn stroke and player-specific latent representa-
tions in a spatiotemporal encoder module. The represen-
tations are then used to condition the subsequent strokes
in a decoder module through rally-aware fusion blocks,
which provide additional relevant strategic and technical
considerations to make more informed predictions. Ral-
lyTemPose shows improved forecasting accuracy compared
to traditional sequential methods on two real-world bad-
minton datasets. The performance boost can also be at-
tributed to the inclusion of improved stroke embeddings ex-
tracted from the latent representation of a pre-trained large-
language model subjected to detailed text descriptions of
stroke descriptions. In the discussion, the latent representa-
tions learned by the encoder module show useful properties
regarding player analysis and comparisons. The code can
be found at: This https url.

1. Introduction
In racket sports, players exchange strokes in a rally until one
player fails to successfully return a shot, giving the point
to the opponent, see Fig. 1. Predictions about strokes of
players, drawing on their history of previous strokes, benefit
athletes’ training and match preparation and can contribute
to an improved viewing experience during live broadcasts
[5]. Badminton, characterized by swift shot exchanges and
strategic shuttle placement, presents a challenge for deep-
learning computer vision-based sports analytics. The prob-
abilistic nature of stroke forecasting in racket sports such as
badminton [1] complicates predictive analytics due to the
inherent unpredictability of player decisions. At any time,
players face multiple viable actions. This unpredictability
originates from the dynamic interplay of factors such as
the physical state, psychological condition, and tactical ap-
proach of the player, which influence the selection of poten-

Figure 1. Datastructure overview shows that each stroke/action
in a rally, i.e., stroke sequence, is provided the skeleton motion
sequence of the stroke for additional context.

tial strokes and strategies. This work aims to design a model
capable of incorporating some of the uncertainty-inducing
factors into the prediction process.
One approach to reducing the uncertainty associated with

subsequent stroke predictions involves incorporating var-
ious otherwise uncertain contextual information into the
model. These factors include player skeleton data se-
quences, player identification (ID), and turn-based rally
awareness. Player skeleton data sequences contain the
movement and positions of a player’s joints over time and
have shown increasingly promising results for general ac-
tion recognition [14, 22, 25, 33] and sports applications
[8, 18, 19, 34]. The sequences contain the motion of player
strokes. This data can reveal patterns in a player’s technique
and movement that give information about future strokes,
allowing models to account for individual players’ physi-
cal capabilities and limitations. Incorporating player ID as
information allows the predictive models to consider his-
torical performance data and personal playing styles. This
individual-specific approach recognizes that each player has
unique characteristics (strengths, weaknesses, and strate-
gic preferences) influencing their selection of shots in the
game. Theoretically, by identifying these characteristics,
the model can better predict a player’s likely actions in var-
ious game situations. Finally, turn-based rally awareness
introduces an extra contextual layer to the prediction [31]
by specifying the actor and reactor behind each stroke. In-
cluding turn-based nuances allows the model to isolate the
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individual player’s motion and obtain a clear representation
of each stroke. The additional context provided by skeleton
data sequences, player ID, and turn-based rally awareness
attempts to construct a method that moves beyond the ba-
sic statistical probability of the rally sequences and instead
embraces a more holistic understanding of the game. This
approach aims to predict the next stroke and simultaneously
capture the underlying (player) process behind stroke selec-
tion in racket sports.

This paper builds upon concepts of our previous work
[17] and presents a transformer-based model for action fore-
casting in badminton.1 The primary contributions of this
research include:

1. A skeleton-based spatiotemporal encoder that uses trans-
former and pooling blocks to learn representations for
enhancing next stroke predictions in badminton.

2. An adaptive cross-attention decoder that incorporates
contextual stroke descriptors from high-dimensional em-
beddings of a pre-trained language model (LM).

3. Examples of how the latent variables can be used for
match and playstyle analysis.

The following sections will detail the methodology behind
this approach, the architecture of the transformer-based
model, and the findings from various experimental evalu-
ations.

2. Related Work

2.1. Action forecasting

Prior works have attempted to develop a wide range of neu-
ral network models to forecast future action sequences from
observed action labels or extracted video features. The pa-
per [11] introduced a method using a recurrent neural net-
work (RNN) - hidden Markov model to classify actions
from video frames, followed by a convolutional neural net-
work (CNN) or RNN that predicted the following actions in
the sequence. In [20], they employed a variational multi-
headed GRU to predict future actions and their duration.
They showed that their approach worked for both one-hot
action labels and extracted video features. Similarly to our
approach, [12] suggested jointly using both frame and an-
notation features to improve the prediction capacity of their
model. [23] employed sequence-to-sequence models using
a gated recurrent unit (GRU) encoder-decoder architecture
to predict future actions from RGB frames alone. To our
knowledge, skeleton data is not commonly used as a modal-
ity for in-action sequence forecasting. Instead, action labels
are used to condition observed skeleton sequences to gener-
ate future skeleton sequences. [13, 24] employs variational
autoencoders for this task.

1Our code is available on github https://github.com/
MagnusPetersenIbh/RallyTemPose.

2.2. Data analytical sports applications

Action recognition tasks fill up the majority of sports-
focused research in the field of computer vision. Here, con-
volutional neural networks (CNN) have been used for fea-
ture extraction on RGB images [26]. Classification algo-
rithms such as Support Vector Machines then use the ex-
tracted features to make predictions. Transformer models
have also gained traction for spot application tasks. In [3], a
Vision Transformer (ViT) [9] is used as the backbone to do
group activity recognition (GAR) in Volleyball and basket-
ball.
Skeleton data, as opposed to image data, has proven effec-
tive for the analysis and recognition of activities in various
sports, including Tai Chi [8, 10, 30] and fencing [21, 34].
Skeleton-based Temporal convolutional networks (TCN)
have seen use for action recognition in table tennis [18],
where TCNs performed better than LSTM models. In bad-
minton, [19] used skeleton data and shuttle trajectory data in
a GRU model to perform binary hit detection. They further
improved the detection rate by using badminton-specific
rules. Specifically for stroke prediction [31] employed
a transformer-based player and position-aware model that
used prior stroke types and shuttle placement to predict fu-
ture position and type of strokes. Instead of the shuttle
placement, our work uses the players’ skeleton and ground
motion to provide a dynamic understanding of each stroke
as the basis for predicting the subsequent strokes in the se-
quence.

3. Task formulation

In action forecasting for racket sports such as badminton,
the strokes are the central actions. A stroke is the mo-
tion of a player preparing to hit the shuttle until shortly
after contact between the racket and the shuttle. The ex-
change of strokes between players, called a rally, contin-
ues until one player fails to return the opposing player’s
stroke. The scientific objective is to predict the next stroke
within a rally based on previously executed strokes while
also considering the actual motion of players by incorpo-
rating 2D skeleton pose data. A pose K(i)

j within a stroke
si (ith stroke in the sequence) captures the spatial config-
uration of the player’s body at a given time frame j, rep-
resented by a set of keypoints that denote the 2D image
positions of the body joints. Additionally, the sequence
G = g(i)1 , ..,g(i)j , ..g(i)T , representing the 2D positions of the
players’ feet on the ground plane for each frame, is sampled
and structured as g(i)j ∈ RT×2, as an additional data source.
A rally S is denoted S= [s1, . . . ,sN ], where si is the ith stroke
within the rally. Each stroke is described by a sequence of
poses K(i)

1 , . . . ,K(i)
T , with T representing the duration of a

stroke sequence and N the number of strokes in a rally.
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The goal is to predict the subsequent stroke si+1 in the
rally sequence S and show that leveraging both the historical
sequence of strokes and motion provided by the 2D skeleton
poses improves the prediction rate.

4. Model

This section describes the concepts of the autoregressive
stroke prediction model, RallyTemPose. The main contri-
bution of the model is that the encoder module takes the
skeleton data and player ground condition as additional data
and computes an embedded representation that conditions
the rally sequence to predict the next stroke in the rally,

p(si+1|s1:i,K1:i,G1:i, I) = Dec(si:1,Enc(K1:i,G1:i, Id)).
(1)

The overview of RallyTempose can be seen in Fig. 2.

4.1. Encoder

The encoder consists of a linear projection layer that em-
beds the raw data frames of player positions and skeleton
poses into tokens. A learnable joint encoding (JE) is added
to the tokenized data to provide information about the joint
arrangement of the skeleton data. The Spatial Transform
(ST) then applies a pose-wise transformer mechanism fo-
cusing on spatial relationships between keypoints in the
player’s movements. The ST is followed by a Grouped
Pooling Block (GPB), which aggregates information, re-
duces dimensionality, and focuses on the relevant features
of the players’ movements. The Temporal Transformer
(TT) focuses on the temporal dynamics, processing the pose
movements over time. An important detail is that for the ST
and TT blocks, both the inter-player (cross-attention) and
intra-player (self-attention) attention is computed; see Fig. 3
for a visual depiction. The temporal transformer is followed
by another GPB that pools over the embedded temporal rep-
resentation. The final step produces (see Fig. 2) the three
latent variables: a stroke representation zs, a player 1 repre-
sentation z1, and a player 2 representation z2. zs merges the
processed representations of both players for each stroke,
providing complete context for each stroke. The player rep-
resentations, on the other hand, are limited to information
about one specific player.
Transformer Block:
In the transformer block, see Fig. 2, the layer normalized
input is first subjected to the multi-headed self-attention
(MHSA) mechanism that computes attention scores after
being masked with either casual or padding mask (hides
padded or future token from getting attention).

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V, (2)

Q, K, and V represent Queries, Keys, and Values, all
being learned linear projections of the embedded repre-
sentation vectors. The transformer block employs multi-
head attention by splitting Q, K, and V into multiple
heads h for parallel processing: MultiHead(Q,K,V ) =
Concat(head1, ...,headh)W O. Following this, a fully con-
nected network (FC) applies nonlinear transformations to
each position independently:

FC(x) = GELU(Norm(x)W1 +b1)W2, (3)

where both the MHSA and FC block have residual connec-
tions, GELU activations, first proposed in [16], and Norm
refers to a layer normalization.
Group Pooling Block:
The GPB, shown in Fig. 2, based on [14], but here used
in connection with transformer blocks instead of fully con-
nected layers aggregates global and local information in
embedded data through global and local max pooling.
The pooling module operates on an embedded tensor X ∈
RG×N×D, split into select groups. N, G, and D denote the
number of groups, group size, and the feature dimension,
respectively. First, a global max pooling operation over the
features in all groups with

Md = Gpool(X)d = max
n,g

Xn,g,d ,M ∈ X (4)

thus captures the most significant activations across all
groups and instances for each feature. Simultaneously, lo-
cal max pooling (Lpool) is executed by pooling over the
group in X to create N features vector with the aggregated
D features, yielding

Qn,d = Lpool(X)n,d = max
g

Xn,g,d . (5)

The locally pooled features are then concatenated with the
globally pooled features (expanded to match local dimen-
sions), yielding a tensor Y ∈ RN×2D.

Yn,d = Concat[Lpool(X)n,d ,Gpool(X)d ]. (6)

Lastly, an FC layer maps it back to the feature dimension D.

4.2. Decoder

In the decoder, an embedding layer maps the one-hot en-
coded stroke sequences into stroke tokens. Subsequently,
the turn-based nature of badminton is exploited by adding
the specific player representations (z1 or z2) of the player
performing the actual stroke. Through a self-attention
module, the player-embedded stroke sequence is initially
encoded. Subsequently, the decoder block (DB) uses
cross-attention mechanisms to condition each stroke on the
skeleton-based stroke representations zs from the encoder.
The final component, an MLP Head, takes the output from
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Figure 2. Overview of our approach in, with corresponding components. The abbreviations refer to the following: JE: learned joint
encoding added to each pose keypoint, TE: learned temporal encoding added to the frame level tokens in a stroke, ST: spatial transformer,
TT: temporal transformer, GPB: group pooling block, FC: fully connected, TCN: temporal convolutional network smoothing over the
player ground positions, DB: decoder block.

Figure 3. Illustration of the different types of attention present in
the encoder module.

the DB to predict the probability of the next stroke in the
sequence.
Decoder Block:
The Decoder Block (DB) combines self-attention, dual
cross-attention, and an adaptive fusion mechanism. The
block employs layer norms to ensure stability during the
forward pass. The target embedded stroke sequence is first
subjected to MHSA, after which encoder-to-decoder cross-
attention and decoder-to-encoder reverse cross-attention are
applied, facilitating stronger incorporation of the encoder
representations zs of the stroke motion. This is further en-
sured through an adaptive fusion layer that linearly com-
bines the outputs of the dual cross-attention, which a stan-

dard Transformer Block subsequently processes for final re-
finement.

4.3. Enhanced Stroke Embeddings

Another aspect of our model is its pre-trained Language
Model (LM) utilization. Specifically, BERT [7], for em-
bedding various stroke types. Each stroke type is anno-
tated with a description of its characteristics and typical use
cases. From these descriptions, a high-dimensional stroke
embedding is processed and extracted from the latent layer
of a pre-trained BERT model. The LM representation pro-
vides more detailed embeddings than those derived from a
learned embedding on a comparatively smaller dataset than
the one on which the LM model was trained.

4.4. Training

The makeup of a transformer allows for N−1 training sam-
ples to be created from a N stroke rally S. In each training
sample, the last stroke functions as the prediction target of
the model, while all prior strokes in the rally serve as the
observed sequence. This strategy allows for variable-length
training sequences, allowing the model to observe the con-
nection between all possible strokes in a rally during train-
ing. Sequence diversity helps the model avoid overfitting.
The network is trained using two loss functions. First, we
minimize the cross-entropy loss between the target and pre-
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dicted strokes:

Lmain(si+1, p̂i+1) =−
C

∑
j=1

s( j)
i+1 log(p̂( j)

i+1), (7)

where C is the number of stroke classes, si+1 is the one-
hot encoded target stroke, and p̂i+1 is the predicted stroke
type probability vector. Second, an auxiliary objective is
defined on the output of the encoder’s latent stroke variable,
zs. The cross-entropy of the linear projection, âi, of the la-
tent stroke variable zs(i) and the corresponding stroke type si
is minimized as

âi =Wauxzs(i) +baux, (8)

Laux(si, âi) =−
C

∑
j=1

s( j)
i log(â( j)

i ). (9)

Here, both objectives are described for a single stroke de-
noted by the subscript i, but in practice, the loss is the av-
erage of all strokes in a sequence. The total loss is the
weighted sum of the two losses

L = γLaux +Lmain, (10)

where γ is a hyperparameter, γ = 0.3 during experiments.

5. Experiments
5.1. Datasets

ShuttleSet The ShuttleSet [32] dataset contains 42 pro-
fessional matches from 2018 to 2021, featuring 26 players
across men’s and women’s singles categories. It is com-
posed of more than 3000 rallies and 34000 strokes, with an
average rally length of 10 strokes. Domain experts anno-
tated the strokes in the dataset into 10 distinct shot types:
net shot, clear, push/rush, smash, defensive shot, drive, lob,
dropshot, serve, and unknown/error. The number of strokes
for each type can be seen in Tab. 1. For model training and
testing, the dataset is divided such that 80% of the rallies
from each match are used for training, ensuring compre-
hensive player history, and the remaining 20% for testing.

BadmintonDB The BadmintonDB [2] dataset consists of
9 annotated video data professional men’s singles matches.
The dataset includes 811 rallies and 9,671 strokes, all fea-
turing the players Kento Momota and Anthony Sinisuka
Ginting. The dataset provides annotation of the strokes into
10 distinct types, that follow the recommended coaches’
guide of the Badminton World Federation (BWF). The shot
types are almost identical to the shuttleset data, see Tab. 1
for the stroke distribution. The same two players play in
all matches, hence the 2 complete matches are reserved for
testing and the remaining 7 for training.

5.2. Skeleton pose extraction

The pose extraction workflow involves two key stages:
adopting techniques from [4, 6] for human detection and
pose estimation and utilizing the HRNet framework [27]
for precise 2D pose estimation. The presence of non-
participants, like spectators, can adversely affect the skele-
ton data’s quality by including poses of irrelevant charac-
ters. To tackle this, a homography based on the badminton
court dimensions is computed to map detected individuals’
feet to the ground plane, ensuring the focus is solely on
players. This method also distinguishes between the top and
bottom players in each sequence. Missing skeleton data is
addressed by linear interpolation between the preceding and
future frames. Pose normalization involves centering and
scaling to standardize the bounding box diagonal to one.

5.3. Evaluation metrics

In badminton, more than one stroke is often a viable choice,
which should be reflected in the evaluation metrics. The
performance of the models is judged based on the accuracy
(acc) of their prediction, the top-2 accuracy (acc2), and the
top-3 accuracy (acc3).

5.4. Baselines

No other existing work uses stroke skeleton data to enhance
future stroke prediction capabilities. Therefore, our model
performance is compared to other sequence and action pre-
diction baselines not explicitly designed for badminton. All
model baselines consist of current state-of-the-art concepts
for sequence prediction, and thus, while not intentionally
designed for badminton stroke prediction, comparing to the
baselines allows for a good estimate of the prediction capa-
bilities of our specific model. The following baselines are
used for comparison:

• Seq2Seq [28]
• Transformer [29]
• Actionformer [22] + Transformer decoder

5.5. Implementation details

The dimension of embedded representation (d) per head is
set to 16, the number of heads (h) in the MHSA is set to 4,
and the forward expansion in the inner dimension of feed-
forward layers is set to 4 following[15]. A rally’s max se-
quence length (s) is set to 35, and T varies for different
rallies. Similarly, the max temporal length of each stroke
motion (T ) is set to 30. Dropout and Attention dropout are
utilized in each MHSA block with a drop rate of 0.3. The
models are trained with a batch size of 1 using AdamW with
a learning rate set to 10−4. Zero padding is performed for
individual stroke motion sequences. Padding the rallies was
also tested but did not improve performance.
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Table 1. Distribution of the data classes for the two datasets.

Net-Shot Defensive-Shot Smash Lob Clear Drive Dropshot Push/Rush Serve Error
ShutSet 6716 3836 3749 4614 2440 1091 2929 3021 2060 1095
BadminDB 1756 1281 1154 1954 596 188 108 715 108 131

Figure 4. Comparisons of class accuracy for the different stroke
types in the ShuttleSet dataset.

5.6. Main Experiments

In the comparative analysis of predictive models on the
ShuttleSet and BadminDB datasets, our model outperforms
the other baseline models in standard and top-3 accuracy.
On the ShuttleSet dataset, it achieves an accuracy of 54.3%,
a top-2 accuracy of 77.3%, and a top-3 accuracy of 92.5%,
indicating its ability to rank the correct outcome within the
top three predictions in over 90% of the cases. In the Bad-
minDB dataset, our model achieves an accuracy of 62.8%
and a top-3 accuracy of 93.1%. The BadminDB is much
smaller than ShuttleSet, which resulted in our model often
overfitting. As a result, the much simpler sequential models
perform better on BadminDB comparatively, but RallyTem-
pose still slightly outperforms them in the end.
The results show the model’s prediction prowess and reflect
its ability to select the most logical outcomes. For a given
situation, multiple stroke candidates can be perfectly viable
simultaneously. The results in both accuracy metrics, espe-
cially in the top-3 accuracy, suggest that our model’s way of
incorporating skeleton-motion and player-specific informa-
tion improves the prediction logic compared to the baselines
in the context of badminton datasets.

Logical misclassifications: In Fig. 4, the specific accu-
racy and misclassification ratio for all stroke types is plot-
ted. Strokes like the smash are accurately predicted, while
strokes like the clear and drives are only correctly predicted

12% and 14% of the time, respectively. However, by exami-
nation of the confusion matrix in Fig. 5, most classifications
can be attributed to logical reasoning, and all misclassifica-
tions belong to sensible groups (Net-shots, push-rush, and
lobs), (drives and defensive shots) and, (smash, clears and
drops). For example, a clear is predominantly hit from the
backcourt on shuttle trajectories and racket swings similar
to a smash and, to a lesser degree, a drop. This is con-
sistent with the faulty prediction of clears being smashes
and drops, and hence the predictions follow an underlying
logic of the game. Similarly, a drive can easily be con-
fused with a defensive reaction shot. Our model can still
be improved further. We hypothesize that a deeper strate-
gic understanding of each situation can increase accuracy
even more. However, the results indicate that our model,
through purely next-stroke action prediction, has developed
a rudimentary game understanding.

6. Discussion
6.1. Ablation Study

The impact of our skeleton-based stroke condition on the
prediction capability is examined through an ablation study.
The relative contribution of 1.) skeleton data, 2.) ground
position of the players, and 3.) specific player embedding
is determined through six different model variants. In 3 the
respective prediction accuracies are shown after removing
specific model inputs and their corresponding model com-
ponents. The results show that the most critical factor is the
inclusion of the player ground position, as leaving out this
data along with the TCN block leads to a 2.6% drop in per-
formance. The encoder version made up solely of a TCN
block achieves a 51.6% accuracy. The player-specific in-
formation does not significantly boost the prediction accu-
racy, however, as shown in the next section, learning player-
specific representations allows for introspective player anal-
ysis that can be extrapolated from the model. Since includ-
ing the players’ ground positions results in a significant per-
formance boost. A potentially even greater performance in-
crease could be obtained by including 3D skeleton data as
well.

6.2. Match Analysis Prospects

The model’s design allows for player comparison by ana-
lyzing the latent variables of the model. Fig. 6 and Fig. 7
show t-SNE plots of the latent variables. In the visualiza-
tion zs are colored based on the target stroke they represent,
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Table 2. Accuracy (Acc), Top-2 Accuracy (Acc-2), and Top-3 Accuracy (Acc-3) of our models and other baselines on the ShuttleSet and
BadminDB datasets.

ShuttleSet BadminDB

Model Acc (%) Acc-2 (%) Acc-3 (%) Acc (%) Acc-2 (%) Acc-3 (%)

Seq2Seq (LSTM) 47.9 72.4 83.5 57.3 82.3 86.0
Transformer 49.8 73.9 87.2 61.5 85.4 92.5
POT + Trans Dec 52.1 74.1 91.2 58.4 82.0 91.7

RallyTemPose 54.3 77.3 92.5 62.8 83.5 93.1

Figure 5. To the left is the confusion matrix for the shuttles data, and to the right is the confusion matrix grouped according to logical
classes.

Table 3. Ablation Study of RallyTemPose model.

Keypoint Ground Player Rep Accuracy (%)
48.3

✓ 49.2
✓ 46.9

✓ 51.6
✓ ✓ 50.1

✓ ✓ 52.4
✓ ✓ 51.7
✓ ✓ ✓ 54.3

whereas z1 and z2 are colored according to the players they
represent. Clear groupings are observed for the different
zs stroke variables and partial groupings of the player vari-
ables. This indicates that zs and, to a lesser degree, z1 and z2
stores relevant information about strokes and playing styles
respectively. While the specific player embedding does not
significantly improve the model’s prediction accuracy, it al-
lows for model intrinsic playstyle comparisons.

Player Similarity We can project the playstyle similar-
ity of different players by looking at the cosine similarity
of the player-specific latent variable for the other players

in the dataset. The cosine similarity is calculated by ran-
dom sampling of N = 1000, strokes, for each of the pair
combinations of players and calculating the average cosine
similarity between the latent player variables as

Player Simi, j =
N

∑
n=1

zn
i · zn

j

∥zn
i ∥∥zn

j ∥
. (11)

Tab. 4 shows the cosine similarity between the latent vari-
ables of players for 5 different players. Observe that there
is a notable difference in similarity between the players.
On average, the male (first 3 players) and female (last 2
players) have a lower similarity, whereas the same gender
similarity scores are higher. However, the player similarity
score is also quite low between the 3 males. This, how-
ever, is quite sensible since Male 3, known for a unique,
endurance-based, hard-to-read playstyle, Male 2, with a
very fast-paced style, and Male 1, with a physical and pow-
erful playstyle, are very different players, and the similarity
score reflects that. Future work could include categorizing
distinct playstyles and attempting to interpret them as de-
fensive, offensive, power, placement, etc.

Play-style analysis In Fig. 8, a bar plot of the average ac-
curacy for each player in the ShuttleSet dataset is shown.
There is a notable gap of more than 20% average accuracy

3382



Figure 6. t-SNE plot over the latent stroke zs representation, col-
ored according to the observed stroke types.

Figure 7. t-SNE plot over the latent player representation (z1 and
z2), colored according to the target player Id. Note the lack of
very distinct groupings of the player variables, which could be ex-
plained by the difference/similarity in how players perform certain
strokes.

Table 4. Cosine similarity between latent player variables of dif-
ferent classes. (M: male, F: female)

Player sim M1 M2 M3 F1 F2

M 1 0.61
M 2 0.43 0.58
M 3 0.37 0.41 0.67
F 1 0.21 0.19 0.31 0.71
F 2 0.23 0.51 0.49 0.57 0.65

between the players, which strokes are predicted the best
compared to the player predicted the worst. The prediction
accuracy of specific players could be used to indicate how
well players can mask their strokes. However, the approach

Figure 8. The average accuracy of next stroke predictions for all
the players in the dataset.

assumes the model can flawlessly predict straightforward
strokes, which is not yet guaranteed. Still, through continu-
ous improvement of the model, this could be a helpful asset
for player analysis.

6.3. Future prospects

Looking ahead, we aim to enhance the model’s capabilities
by incorporating additional variables, such as match out-
comes (win/loss), to facilitate more sophisticated tactical
analysis. Additionally, expanding the model to predict the
skeleton sequence of the predicted strokes would be benefi-
cial not only for sports analysis purposes but also for creat-
ing synthetic data in a field where quality annotated datasets
are sparse.

7. Conclusion

This research introduced a model specifically designed
for stroke prediction in badminton, utilizing an encoder-
decoder architecture. The model integrates skeleton data
and player-specific information using a spatiotemporal
transformer encoder. Our experiments, conducted on two
different real-world badminton datasets, show an increase
in performance for our approach compared to other fore-
casting baselines. Furthermore, the extracted latent repre-
sentations show potential use for player analysis and match
preparation.
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